

The Development of a Quantum Computer in Silicon

Professor Michelle Simmons

Director, Centre of Excellence for Quantum Computation and Communication Technology, Sydney, Australia December 4th, 2013

Outline

Short history of development of quantum computing

Comparison of classical and quantum computing

Experimental requirements for the practical realisation of a quantum computer: the 7 DiVincenzo criteria

Leading contenders in the solid state

Current status of silicon based quantum computing

A Brief History of Quantum Computing

1982: Richard Feynman, at the First Conference on the Physics of Computation held at MIT, proposed a basic model for a quantum computer that would exploit the potential of massive quantum parallelism.

1994: Peter Shor discovers the factorisation algorithm for large numbers theoretically capable of breaking today's public key cryptosystems.

1995: Peter Shor and Andrew Steane simultaneously proposed the first schemes for quantum error correction.

1996 Lou Grover propose an exhaustive search algorithm that showed for a system of *n* possibilities you can find the answer in \sqrt{n} look-ups quantum mechanically compared with n/2 classically.

1998 Ray LaFlamme experimentally demonstrates error correction in a trichoroethylene molecule using liquid state NMR

Classical versus quantum bits

	Conventional Computer	Quantum Computer	
	0, 1	0>, 1>	
	bits	qubits	
	information is stored in "bits". A bit can be either 0 or 1.	information is stored in "quantum bits" or qubits, which can be <i>a</i> <i>combination</i> of 0 and 1.	
		Quantum state of a two-level system such as spin or charge of ³¹ P nucleus	÷
cł	harge $e = 1\rangle$ $e = 0\rangle$	spin 1> 0>	B
	$\int_{\Theta} \int_{\Theta} = \Theta = \frac{1}{\sqrt{2}} (0\rangle + 1\rangle)$	$\pi/2$ pulse $\frac{1}{\sqrt{2}}$ ([0	$0\rangle + 1\rangle)$

Classical versus quantum computation

Classical computer - can check many different possibilities in *rapid succession* Quantum computer - can check many different possibilities *in parallel*

Digital information : 0 Superposition, 1 spin: $\Psi = \alpha_1 | 0 > + \alpha_2 | 1 >$ Entanglement, 2 spins: $\Psi = \alpha_1 | 00 > + \alpha_2 | 01 > + \alpha_3 | 10 > + \alpha_4 | 11 >$

qubits classical possibilities power 0 or 1 2 0 or 1 2 0 0, 01, 10, 11 4 0 0 0, 001, 010, 011 8 N 2N

Quantum computer's power *doubles* every time another qubit is added

A 30-qubit quantum computer would be more powerful than a supercomputer..

As for 300 qubits....

Difficult problems: the travelling salesman

Problem: A salesman has to travel to many cities and wants to work out the shortest possible route

14 cities: 10¹¹ routesfor a classical 1GHz computer (10⁹ operations/sec) it
would take 100 seconds

22 cities: 10¹⁹ routes it would take 1600 years

28 cities

What can quantum computers do?

Quantum computers will not necessarily outperform classical computers but need to use algorithms that exploit quantum parallelism.

Applications: physical modelling (climate, engineering); simulations (chemistry, materials), database searching (bioinformatics); factorisation (data security)

Algebraic and Number Theoretic Algorithms (11 algorithms); e.g. factorising Oracular Algorithms (29 algorithms); e.g. searching, linear differential equations Approximation and Simulation Algorithms (10 algorithms); e.g. simulation, adiabatic algorithms

Experimental Requirements for Quantum Computing Devices

Relaxation and coherence times

The longitudinal relaxation time, T_1 is the timescale for the exponential decay of a nonequilibrium polarization of spins to give up its Zeeman energy to the lattice.

→ it represents the maximum time available for a quantum computation

The transverse relaxation time, T_2

The amplitude of the net transverse magnetisation decays as the magnetic moments move out of phase with one another (shown by the small black arrows). Arise from spin-spin interactions.

The overall term for the observed loss of phase coherence is T_2^* relaxation, which combines the effect of T_2 relaxation and additional de-phasing caused by local variations (inhomogeneities) in the applied magnetic field, e.g. by the presence of other nuclear spins.

Overview: Qubits in the Solid State

	Atom, molecule, ion	Electron spin	Nuclear spin	Superconducting qubit
Size	$\sim 10^{-10}$ m	$\sim 10^{-10}$ m (impurities) $\sim 10^{-8}$ m (quantum dot) ^a	$< 10^{-10} \text{ m}^{\text{a}}$	$\sim 10^{-6} {\rm m}$
Energy gap	10^{5} – 10^{6} GHz, ~GHz (Rydberg atoms)	1–10 GHz	1–10 MHz	1–20 GHz
Frequency range	Optical, microwave	Microwave	Microwave	Microwave
Operating temperature	nK to μ K	~100 mK (quantum dot), room temperature (NV center)	~mK	$\sim 10 \text{ mK}$
Single-qubit gate operation time τ_1	$\sim \mu s$ (atom) $\sim 50 ps$ (ion)	$\sim 10 \text{ ns}$	$>10 \ \mu s$	~ 1 ns
Two-qubit gate operation time τ_2	$\sim \mu s$ (atom) $\sim 100 \ \mu s$ (ion)	~0.2 ns	$\sim 10 \text{ ms}$	~10–50 ns
Coherence time T_2	ms to s	ms to s	\sim s	~10–100 µs
T_2/τ_1	$10 - 10^4$	$10^{5} - 10^{8}$	10^{6}	$10^4 - 10^5$
Coupling type	Electric or magnetic	Magnetic or electric	Magnetic	Electric or magnetic
Coupling strength with the cavity	<kHz (<i>B</i> field), ~10 kHz (<i>E</i> field), ~10 MHz (Rydberg atoms)	>MHz (quantum dot) \sim 100 Hz (impurities)	~0.1 Hz	\sim 0.1–1 GHz

TABLE I. Comparison between different systems used as qubits.

- Superconducting qubits offer flexibility and strong coupling to external fields BUT have relatively short coherence times (<0.1ms)
- Microscopic systems are given by nature and can easily be made identical with long coherence times (>1ms) BUT they operate slowly due to weak coupling to external fields.

Z.L. Xiang, Rev. Mod. Phys. 85, 623 (2013).

DiVincenzo Criteria for a scalable system

A quantum register of multiple qubits must be prepared in an addressable form and isolated from environmental influences, which cause the delicate quantum states to decohere. Although weakly coupled to the outside world, the qubits must nevertheless be strongly coupled together to perform logic-gate operations There must be a readout method to determine the state of each qubit at the end of the computation.

1. A scalable physical system of wellcharacterized qubits

¹ D. DiVincenzo, Fortschritte der Physik-Progress of Physics 48, 771 (2000)

Well defined two level quantum system

Physical system	Name	Information support	0>	1>
	Polarisation encoding	Polarisation of light	Horizontal	Vertical
Photon	Number of photons	Fock state	Vacuum	Single photon of light
	Time-bin encoding	Time of arrival	Early	Late

DiVincenzo Criteria for a scalable system

2. The ability to initialize the state of the qubits to a simple state

1. A scalable physical system of wellcharacterized qubits

¹ D. DiVincenzo, Fortschritte der Physik-Progress of Physics 48, 771 (2000)

Initialisation of electron spin

S SET

SET-island

P Donor

DiVincenzo Criteria for a scalable system

3. Coherence times >> gate-operation times

2. The ability to initialize the state of the qubits to a simple state

1. A scalable physical system of wellcharacterized qubits

¹ D. DiVincenzo, Fortschritte der Physik-Progress of Physics 48, 771 (2000)

Promising proposals for qubits

Table 1 Current performance of various qubits							
Type of qubit	T ₂	Benchmarking (%)		References			
		One qubit	Two qubits				
Infrared photon	0.1 ms	0.016	1	20			
Trapped ion Trapped neutral atom	15 s 3 s	0.48 [†] 5	0.7*	104-106 107			
Liquid molecule nuclear spins	2s	0.01 [†]	0.47†	108			
e ⁻ spin in GaAs quantum dot e ⁻ spins bound to ³¹ P: ²⁸ Si ²⁹ Si nuclear spins in ²⁸ Si NV centre in diamond Superconducting circuit	3μs 0.6 s 25 s 2ms 4μs	5 5 5 2 0.7 [†]	5 10*	43, 57 49 50 60, 61, 65 73, 79, 81, 109			

Measured T_2 times are shown, except for photons where T_2 is replaced by twice the hold-time (comparable to T_1) of a telecommunication-wavelength photon in fibre. Benchmarking values show approximate error rates for single or multi-qubit gates. Values marked with asterisks are found by quantum process or state tomography, and give the departure of the fidelity from 100%. Values marked with daggers are found with randomized benchmarking¹⁰. Other values are rough experimental gate error estimates. In the case of photons, two-qubit gates fail frequently but success is heralded; error rates shown are conditional on a heralded success. NV, nitrogen vacancy.

T.D. Ladd, Nature 464, 45 (2010)

DiVincenzo Criteria for a scalable system

4. A universal set of quantum gates

3. Coherence times >> gate-operation times

2. The ability to initialize the state of the qubits to a simple state

1. A scalable physical system of wellcharacterized qubits

¹ D. DiVincenzo, Fortschritte der Physik-Progress of Physics 48, 771 (2000)

Universal quantum gates

Universal: one single computer for different computational tasks

In quantum computation all operations must be reversible.

An example of a non-reversible gate is an **AND** gate where two inputs only give one output \rightarrow therefore information is lost.

2-input AND gate

The quantum states of a qubit are a vector in 2D complex vector space.

 $\Psi = \alpha |0> + \beta |1>$

A superposition is a linear combination of the 0 and 1 state amplitude with coefficients α and β . The constraints are that:

 $|\alpha|^2 + |\beta|^2 = 1$

Single quantum NOT gate

Quantum NOT gate: $|0\rangle \rightarrow |1\rangle$ and $|1\rangle \rightarrow |0\rangle$

But we also have a superposition so

 $\alpha |0\rangle + \beta |1\rangle \rightarrow \alpha |1\rangle + \beta |0\rangle$ Logic gate $- X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ $X \mid 0 > = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} = |1>$ $X |1\rangle = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} = |0\rangle$

2 qubit controlled NOT gate (CNOT)

4 computational basis states:

 $\alpha|00\rangle \quad \beta \mid 01\rangle \quad \gamma|10\rangle + \delta|11\rangle \qquad \alpha^2 + \beta^2 + \gamma^2 + \delta^2 = 1$

If the control is 1, flip the target qubit; otherwise do nothing.

$$\begin{array}{l} |00\rangle \rightarrow |00\rangle \\ |01\rangle \rightarrow |01\rangle \\ |10\rangle \rightarrow |11\rangle \end{array} \qquad \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 1 \\ 1 & 0 \\ 1 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 0 \\ 0 & 1 \\ 1 & 1 \\ 1 & 0 \end{bmatrix}$$

 $|11\rangle \rightarrow |10\rangle$

A universal set of gate operations

DiVincenzo Criteria for a scalable system

Single shot spin read out

J. Elzerman et al., Nature 430, 431–435 (2004).

DiVincenzo Criteria for a scalable system

The ability to interconvert stationary and flying qubits

Optically addressing dopant atoms in silicon

C. Yin et al., Nature 497, 91 (2013).

Semiconductor nanophotonics

R. Van Meter et al., Int. J QC 1, 295 (2010).

DiVincenzo Criteria for scalable system

Faithfully transmit flying qubits

Leading Contenders in the Solid State

Electron spins in GaAs

Demonstration of two qubit gate in singlet-triplet basis $T_2 \sim 200 \mu s$

Bell state fidelity ~0.72

M.D. Shulman *et al.,*, Science 336, 202 (2012).

Demonstration of flying qubits: Transport and manipulation of qubits over 6 microns in 40ps using Aharonov-Bohm rings connected to channel wires

M. Yamamoto *et al.,* Nature Nanotechnology 7, 247 (2012)

Main limitation is coherence times ~hundreds of microseconds or less

Diamond based qubits

T₂~400µs (PRB 2011)

Two qubit parity measurement on nuclear spins in NV centres exploiting electron spin as a read-out ancilla

W. Pfaff *et al.,* Nature Physics 9, 29 (2013).

south the second second

Main limitation is difficulty of reproducible fabrication

Demonstration of room temperature entanglement of 2 NV centres

Entanglement fidelity ~0.67

F. Dolde *et al.,* Nature Physics 9, 139 (2013).

Scalable architectures: L. Childress et al., PRL 96, 070504 (2006) P. Rabl et al., Nat Phys 6, 602 (2010) N.Y. Yao et al., Nat. Comms 3 (2012).

Superconducting qubits

Phase qubit (Martinis group)

Transmon qubit (Schoelkopf group)

Flux qubit (Mooij group)

Charge qubit

Current Status of Silicon Quantum Computing

Silicon based qubits

P nuclear spin qubit

^{nat}Si T_2 (n) > 60 ms (ionised donor)

Nuclear spin read-out fidelity 99.8%

J. Pla *et al.,* Nature 496, 334 (2013)

Field gate metal Metal gates Metal gates T R 2-nm Si 30-nm Si_{0.67}Ge_{0.33} 10-nm Si well SiGe buffer D Netal gates Netal PL M PR 00 nm Electron spin qubit in Si/SiGe

Singlet-triplet basis

^{nat}Si T_2 (e) > 360ns

B.M. Maune *et al.,* Nature 481, 344 (2012)

Main limitation is difficulty of fabrication at such small scales

First proposal for a silicon quantum computer

Qubits are the nuclear spins of ³¹P donor atoms in ²⁸Si

Advantages:

- relaxation $T_1 \log (10^{18} s)$
- Low spin-orbit coupling
- Spin free host with low abundance of ²⁹Si (~5%)
- compatible with existing multi-billion dollar silicon microelectronics industry and scaleable

Disadvantages:

 require the ability to dope Si with atomic precision aligned to nanometer sized surface gates

Spin Coherence of P donors

Bulk measurements:

²⁸Si T₁(e) ~ 1 hour (1.2K; 0.35T) ²⁸Si T₂(e) ~ secs (²⁸Si, 1.2K)

A.M. Tyryshkin et al., Nature Materials 11, 143 (2012)

³¹P nuclear memory: $T_2(n) \sim 180$ seconds

²⁸Si: "Semiconductor Vacuum"

M. Steger et al., Science 336, 1280 (2012) D. McCamey et al., Science 330, 6011 (2010) J.L. Morton et al., Nature 455, 7216 (2008)

Ionised donor ~ 39 mins (RT)

M. Saeedi et al., Science 342, 130 (2013)

Scalable 2D architecture

Shuttling time ~ns

L.C.L. Hollenberg, Phys. Rev. B 74, 045311 (2006)

Donor based qubits by ion implantation

Andrew Dzurak, Andrea Morello and David Jamieson

Atomic Fabrication Strategy in Silicon

Narrowest, lowest resistance conducting Si nanowires

lithography

PH₃ dosed

M.T. Bjork et al., Nature Nano 4, 103 (2009).

- Lowest resistivity doped silicon wires
- Constant resistivity down to ~1.7nm
- Resistivity comparable to bulk doping of similar density, ρ~0.3×10⁻³ Ωcm (4.2K)

B.Weber et al., Science **335** 64(2012).

CENTRE FOR QUANTUM COMPUTATION & COMMUNICATION TECHNOLOGY

AUSTRALIAN RESEARCH COUNCIL CENTRE OF EXCELLENCE

First deterministic, precision single donor device

Ejected Si at the same site after incorporation

M. Fuecshle *et al.,* Nature Nanotechnology, 7, 242 (2012)

First deterministic, precision single donor device

A.K. Ramadasa, Rep. Prog. Phys. 44 (12), 1297 (1981).

Single shot spin read-out using all epitaxial SETs

Integration of an in-plane detector for spin read-out

< 4 P donors

120 P donors

S. Mahapatra et al., Nano Letters11, 4376 (2011).

Single shot spin read-out: spin-up

J. Elzerman *et al.*, Nature 430, 431–435 (2004).

Single shot spin read-out: spin down

Spin relaxation rates, T₁

 T_1^{-1} (B) \approx B⁵ agrees with spin-lattice relaxation mechanism from valley depopulation H. Hasegawa, Phys. Rev 118, 1523 (1960)

A. Morello et al, Nature 467, 687 (2010).

P donor single atom qubit

^{nat}Si T_2 (e) > 200 µs (Hahn echo) ^{nat}Si T_2 (n) > 60 ms (ionised donor)

Nuclear spin read-out fidelity ~ 99.8%

Summary

- Quantum computing is a rapidly developing field with several implementations now reaching the integrated circuit state
- Hybrid proposals should allow the transition from stationary to flying qubits for scalable architectures
- There are over 50 different quantum algorithms with more being developed all the time
- In time I am confident that quantum computing will become a practical reality