

3D sequential integration:

an alternative path towards CMOS scalability

leti

Outline

What is 3D sequential integration?

Why 3D sequential integration?

Key technological modules

Outline

What is 3D sequential integration?

Why 3D monolithic integration?

Key technological modules

3D sequential integration flow

1/ Bottom Layer process

2/ Top active creation

Thermal budget limitation is needed

3/ Top FET process

4/3D contact formation

Difference with 3D packaging

Packaging integration (e.g: TSV)

1/ Wafers processed separately

2/ Stacking and contacting

Sequential integration

1/ Bottom Layer process

2/ Top layer process

3/ 3D contact formation

Packaging integration: stacked MOSFETs processed in separatly Sequential integration: stacked MOSFETs processed sequentially

3D sequential integration: advantage & challenge

Major asset: Highest 3D contact density

Packaging integration (e.g: TSV)

3D TSV contact pitch 3-8μm 3D contact density 10⁴ -10⁵ /mm²

Two reasons for the high 3D contact pitch:

- Alignment performance
- 3D contact process

Major challenge: Process top MOSFET at low thermal budget

Sequential integration

3D contact pitch <100nm 3D contact density > 10⁸ /mm²

Alignment performance with sequential 3D

SEQUENTIAL ^{3D}

PACKAGING^{3D}

Bonding of patterned films Alignment & bonding at the same time

Sequential 3D:

alignement obtained by lithography. Litho stepper capability ~ 3σ =5nm Packaging 3D:

alignment made during bonding Bonding stepper capability 3σ~ 1μm

3D contact integration scheme

3D contact process similar to a standard planar W plug process

Contact in an oxide with a slightly higher depth No keep out of zone

3D contact density

[3,4]: P. Garrou et al., Handbook of 3D integration, Vol 1,2 (Wiley ed) / [5]: B. Banijamali, ECTC2011 [6]: S-M. Jung et al., VLSI 2005 pp220 / [7]: P. Batude et al, ECS journal 2008, VO16,pp47

Partitioning levels

Outline

What is 3D sequential integration

Why 3D sequential integration

- 1-Road map driven by FET performance
- 2-Road map driven by interconnection delay reduction
- 3-Opportunities of heterogeneous cointegration

Key technological modules

1- Roadmap driven by FET performance

1- Roadmap driven by FET performance

Performance boosters are different for N & PFETs

Independant N&P optimization is easier with P/N stacking

N/P configuration: boosting FET performance

pFET Ge

nMOS SOI

Ge/HfO /TiN

.0.0 (h F.c m 2) .0.0 (h F.c m 2)

Gate bias V_ (V)

0.4

0.3

X 1.5

Si/HfO_/TIN

EOT=1.9nm T Hto2=5nm

0.1

0.0

J_=1.10-7 A/cm2

0.2

Q_{INV} (e.cm⁻²)

leti

Eeff (MV/cm)

The ultimate cointegration III-V and (Si)Ge

nFET III-V and pFET Ge process are highly different:

Dual active etching/ Dual Gate stack/ Dual RSD/ different optimum architecture/ Dual salicidation/Substrate fabrication: dual material (epi with ART or III-V bonding on GeOI)...

Processing independantly n&pFET on distinct levels enable to save a lot of lithography levels and process co-integration challenges.

Additionnaly, III-V and Ge transistors requires lower thermal budget process. These devices are well adapted to 3D sequential integration.

T. Irisawa et al., VLSI 2013 (AIST)

Choice of architectures

For bottom level, every existing technology can be used On top level, all the thin film technology can be used

Partitioning levels **Sequential 3D 4-Transistors 1-Entire core** 2-Logic bloc **3-Logic gates** Vdd L2 d2d vias Multiple gnd CPU Granularity scale Packaging 3D

N/P or P/ N stacking → IC Gain obtained by boosting FET performance

2- Roadmap driven by interconnection delay

2- Roadmap driven by interconnection delay

IC's performance are strongly limited by interconnection delay

Wirelength must be reduced to benefit from gate delay reduction

leti

Partitioning levels Sequential 3D

CMOS/ CMOS stacking -> IC Gain obtained by decreasing wirelength

CMOS/ CMOS option: Reducing wirelength

The 3D contact links blocks of MOSFETs

To avoid routing congestion, introduction of intermediate lines is mandatory

PPA gain thanks to wirelength reduction

Case of FPGA circuit 14nm planar FDSOI versus 2 stacked 14 nm FDSOI levels

Study taking into account parasitics / 3 metal line between the 2 stacked layers Partitioning SRAM memory on bottom level, logic on top

Analysis on a specific application: FPGA

- Power Performance Area (PPA) benchmark for 3D versus planar
 - Area gain=55%
 - Perf gain = 23%
 - Power gain = 12%
- Decreased delay and power due to shorter wirelengths
 - reduced wire capacitance
 - less signal buffering requirement

1,5 node gain without scaling Stacking 14nm/ 14nm leads to PPA below 10nm

Specific caution for IC performance evaluation

N°1: Evaluation gain will depend on the considered node and on technology hypothesis (Design Rule Manual)

PPA on FPGA for <u>65nm²</u> vs 65nm [1]: P. Gaillardon *et al.,* CASFET 2012

No intermetal lines

Area gain: 21% in average Delay gain: 22% in average

PPA on FPGA for <u>14nm²</u>vs 14nm

[2]: O. Turkyilmaz et al., DAC 2014

3 level of intermetal lines W lines , no low-k dielectrics

Area gain: 55% in average Delay gain: 23% in average

Evaluation gain will depend on the considered node

Specific caution for IC performance evaluation

- N°2: No place & route (P&R) tool adapted for 3D
- → Results provided only for FPGA thanks to it's regular architecture that can be achieved with full custom layout
- → P&R tool enable to optimize the position of the cells to obtain the best gain (in term of area, timing or power)
- \rightarrow Preliminar evaluation via « DIY » P&R tools

Reliable conclusion can't be provided without dedicated 3D P&R tool

leti

N°3: PPA Gain will highly depend on the application

Evaluation for ASiCs 45nm node/ 1 intermediate level only / with 2D modified P&R tool

Gain depends on the application

2- Roadmap driven by interconnection delay : Conclusion

Evaluation on FPGA is feasible thanks to its regular design (Full custom layout possible).

FPGA with two 14 nm stacked levels should enable to outperform the 10nm

Stacking more efficient than scaling?

No modification of transistor technology (tool reuse)

Gain obtained only due to wirelength reduction

2- Roadmap driven by interconnection delay : conclusion

Specific cautions to make a proper PPA benchmark:

1: Evaluation for other ICs cannot be properly performed due to the lack of 3D P & R tool \rightarrow work with EDA providers is necessary

#2: The results will greatly depend on the IC (predominance of delay in interconnection delay in the full IC performance)

#3: The result will greatly depend on the considered node (predominance of delay in advanced nodes)

#4: Technology assumptions must be analyzed carefully, particularly the number of intermediate lines authorized as well as the metal and dielectrics chosen.

3- A key technology for heterogeneous co-integration

Advantages of 3D

 \rightarrow Independant optimisation of each level

 \rightarrow Proximity between stacked functions

Only 3D sequential technology available if 3D contact pitch is smaller than $1\mu m$

3D integrated CMOS Image Sensors (3D-CIS)

Concept: Vertical dissociation of basic pixel operations

Advantages of 3D configuration:

Photodetection \rightarrow dedicated material and processes, 100% fill factor Readout transistors \rightarrow optimized process, relaxed geometries Signal Processing \rightarrow Massively parallel treatment, dense IC integration

30

Miniaturized 3D CMOS Image Sensors

Innovative miniaturized 4T pixels with backside illumination (BSI)^[24]

- Bottom layer: pinned photodiode + Transfer Gate
- Top layer with 3 transistors

Multiple benefits

Ceatech

- BSI integration \rightarrow high quantum efficiency
- Photodiode area +44% for 1.4µm pitch pixel

Only sequential integration can address these dimensions

3D sequential integration of NEMS with CMOS

NEMs = ultra sensitive mass sensors used for gas sensing & mass spectroscopy

MEMS \rightarrow NEMS enable to increase the sensivity but resonance detection is more complex

The challenge of detecting NEMS resonance: NEMS-CMOS integration schemes

Stand-alone NEMS + off-chip CMOS No density (pads number limitation) Very strong signal attenuation (LP filter)

3D sequential NEMS-CMOS No density limitation no signal attenuation

3D sequential NEMS-CMOS co-integration can solve the NEMS density and detection limitation

3D sequential integration of sensors with CMOS

Moving to NEMS array: i.e each NEMS is individually addressed.

 \rightarrow

→ Multiple benefits: increased robustness (redundancy), better SNR (averaging NEMS individual response, provide a spatial response (like an imager), ultra-high density to improve capture efficiency (smaller concentration detection)

> NEMS array enables novel NEMS-based applications such as mass spectrometry

At this scale, only 3D sequential integration enable to reach the 3D contact pitch required (NEMS dimensions converge towards CMOS transistors)

Easy integration of NEMS thanks to it low thermal budget.

3D sequential is well adapted for NEMS array

Rmk: same benefits applicable to other domains such as NEMS-based logic

Outline

What is 3D sequential integration

Why 3D sequential

- 1-Road map driven by FET performance
 - 2-Road map driven by interconnection delay reduction
 - 3-Opportunities of heterogeneous cointegration

Key technological modules

- 1-Maximum top layer thermal budget determination
- 2-Top active creation
- 3-Top FET at low temperature process

General Integration Flow

Which thermal budget?

Part III - Key technological modules

1- Maximum top FET thermal budget determination

Making 3D sequential integration possible

Making 3D sequential integration possible

• Simple method: Annealing of a transistor and observe what is the critical thermal budget for preserving its performance

• This critical thermal budget will depend of the technology (BULK, FINFET, FDSOI) and the node analyzed

FDSOI with implanted Si RSD stability

FDSOI with implanted RSD: max thermal budget = 500°C

FDSOI with implanted Si RSD stability

• No impact of the different anneals shown on multiple key electrical parameters such as:

• DIBL, short channel mobility evidencing no additional dopant diffusion

• EOT regrowth and reliability (NBTI & PBTI) evidencing good stability of the gate stack

FDSOI with implanted Si RSD stability NMOS PMOS MOS PMOS

Ref without annealing

After annealing

• 550°C 1h30 : anneal degrades the silicide on NMOS and PMOS

Need to improve NiPt 10% silicide thermal stability

NiPt silicidation associated with W offers higher thermal stability

Techno 1: FDSOI [1]

-Si channel -Si RSD and implanted source & drain -NiPt 10% salicidation \rightarrow Performance degradation above 500°C,5h

Techno 2: FDSOI with additional boosters [2]

-Si channel for NFET, SiGe for pFET -SiGe:B & SiC:P in situ doped source & drain -NiPt 15% salicidation \rightarrow No Performance degradation up to 550° 2h & 500°C 5h

Weak point of MOSFET technologies is salicide stability

Improving salicide stability could relax top FET maximum thermal budget

Most secure criteria: max thermal budget= 500°C (5h)

NiPt 10%

nFET

Ceatech [1] C. Fenouillet- Beranger et al., ESSDERC 2014 [eff] [2] C. Fenouillet- Beranger et al., IEDM 2014

Part III - Key technological modules

2- Low temperature top active layer creation

Objective:

high cristalline quality/ controlled thickness/ Max TB =500°C

Cristallization of amorphous Silicon

Finding solutions to increase the size of the grains at temperature compatible with bottom MOSFET integrity

Cristallisation of amorphous Silicon

Example of laser annealing

Rmk: Not a lot of application can tolerate the performance dispersion brought by the poly-Si

Ceatech

"Seed window" techniques

To obtain the control of the grain boundaries position and grain orientation

"Seed window" techniques

Remark: Too high thermal budgets applied to the bottom MOSFET

"Seed window" techniques

Liquid phase recristallization on Si with laser

Important challenges needed to be adressed:

Thickness control is mandatory Supression of cristalline defects Reduction of seed window surface penalty

Liquid phase recristallization on Ge with RTP

J. Feng et al., EDL 06, Stanford

Y-H. Son et al, VLSI 2007 & ECS 2013, Samsung

µ-Czochralski

Enable to grow a monocrystalline semiconductor seed on an oxide Control of grain position

Could solve the thermal budget issue, but some points need to be improved:

- -The window is large : important loss in density
- -The window is deep: very high aspect ratio for 3D contact
- -The thickness of the film is highly variable

Carbon nanotubes

Decoupling high temperature CNT growth and 3D sequential integration

BULK direct bonding and ion slicing

Examples of ion slicing reports on bottom MOSFET level

D-S. Yu et al., IEDM 2004, Nat'l Chiao-Tung Univ, Taiwan

L. Xue et al., TED 2003, Cornell university

Patterned reports might be due to:

-Non perfect CMP

-Bonding done with deposited oxide (which contains H_20), patterning avoid the defect due to degassing

ightarrow Solutions described in the following slides

F. Crnogorac et al., JVSTB 2010, Stanford

SOI direct bonding

High quality top film

Blanket Si film on top of a bottom transistor layer:

Stack cross section

Top view:

Acoustic characterization:

Full transfer on processed 300 mm wafers

	Seed window (SW)	Poly-Si	Wafer bonding
Description	SW PMD oxide	PMD oxide	PMD oxide
Density	limited due to SW	Same than bottom level	Same than bottom level
Crystalline quality	Defect in SW region with controlled location	Random defects location	Perfect quality ~SOI supply quality
Thickness control	10s nm range	nm range	Å range
layer orientation	same orientation	random orientation for top substrate	different orientation possible
Thermal budget	Seems incompatible with bottom max TB	Ok with ns laser	<400°C

	Seed window (SW)	Poly-Si	Wafer bonding
Description	SW PMD oxide	PMD oxide	PMD oxide
Density	limited due to SW	Same than bottom level	Same than bottom level
Crystalline quality	Defect in SW region with controlled location	Random defects location	Perfect quality ~SOI supply quality
Thickness control	10s Not compa	tible with high per	formance devices
layer orientation	same orientation	random orientation for top substrate	different orientation possible
Thermal budget	Seems incompatible with bottom max TB	Ok with ns laser	<400°C

	Seed window (SW)	Poly-Si	Wafer bonding
Description Densit Too hi	y limitation gh thermal budget	PMD oxide	PMD oxide
Density	limited due to SW	Same than bottom level	Same than bottom level
Crystalline quality	Defect in SW region with controlled location	Random defects location	Perfect quality ~SOI supply quality
Thickness control	10¢ nm range	um range	Å range
layer orientation	same orientation	random orientation for top substrate	different orientation possible
Thermal budget	Seems incompatible with bottom max TB	Ok with ns laser	<400°C

	Seed window (SW)	Poly-Si	Wafer bonding
Description Densit	y limitation gh thermal budget	PMD oxide	PMD oxide
Density	limited due to SW	Same than bottom level	Same than bottom level
Crystalline quality	Defect in SW region with controlled location	Random defects location	Perfect quality ~SOI supply quality
Thickness control	10¢ nm range	um range	Å range
layer orientation	same orientation	random orientation for top substrate	different orientation possible
Thermal budget	Seems incompatible with bottom max TB	Ok with ns laser	<400°C

More details on direct bonding flow

Constraints brought by 3D sequential integration vs std direct bonding:

Deposited oxides Planarization of topography Unusual MEOL→FEOL flow

Importance of perfect CMP and particle free bonding surface

Perfect CMP

Solution for bonding with deposited oxides at Low Temp

Degassing phenomenon:

Ceatech

Solution for bonding with deposited oxides at Low Temp

Solution proposed \rightarrow Si₃N₄ H₂O barrier to avoid Si oxidation

leti

L. Brunet et al, ECS fall meeting 2014

Part III - Key technological modules

3-Top FET process at low temperature

Low temperature MOSFET main challenges

Low temperature top transistor

Low temperature dopant activation

6nm Si channel SiO₂/HfSiON/TiN patterning First Si₃N₄ spacer Raised S/D epitaxy (Si: nFET/ SiGe: pFET) Low Doped Drain implantation Second spacer High Doped Drain implantation LT=600 °C / HT=1050 °C anneal Salicidation

Ceatech

SPER activated FDSOI devices

SPER process leads to similar performance than High T activation \rightarrow High dopant activation level with 600°C process

leti

SPER activated FDSOI devices

- → Standard drawbacks observed on bulk devices:
 Junction leakage increase
 - Deactivation
- → SPER FDSOI device do not present same drawbacks, why?

Solid Phase Epitaxial Regrowth

Amorphizing implant (e.g. As or Ge + B)

EOR defects formation below former amorphous-cristalline interface

End of Range (EOR) formation

Two phenomena during anneal:

Ceatech

1- Defects growth through an Oswald ripening process

2- EOR defects dissolution via recombination at the interfaces

End of Range defects in FDSOI vs BULK

Junction leakage

For thin channel, no EOR defects at the channel entrance
→ No junction leakage increase

Boron deactivation for thin SOI and BULK

Rsheet evolution with post activation anneal (spacer, BEOL..)

Boron deactivation can be suppressed for Tseed = 5nm

Dopant deactivation in SOI

EOR evolution with post anneals

Original situation after recristallisation anneal (original EOR reservoir is smaller in thin SOI)

During post anneal: emission of interstitial Si atoms from the EOR joining the closest sink

Scaling T_{seed} enable to: - reduce original EOR concentration

- reduce the Si_i flux crossing the highly activated region

avoiding formation of inative Boron interstitials clusters

Optimizing the sheet resistance

Ceatech

- LT : 2min 600°C SPER

□ Applying HT POR implant conditions leads to severe resistance degradation

❑ Reducing implanted dose, R_{sheet} reduced for both As and P

Optimizing the sheet resistance

Dopant Clustering: above a certain dopant concentration, for a given T, part of the dopant forms inactive clusters.

Optimizing the sheet resistance

C: active concentration, $\boldsymbol{\mu}$ mobility of carriers

extraction by Hall measurements

Implantation with concentration higher than clustering limit degrades either the active level and/ or carrier mobility

Dopant concentration must not exceeds the clusterisation limit

Main learnings from SPER junctions optimization

• FDSOI is a key asset for low temperature junction

Indeed EOR concentration reduction enable to supress:

- Junction leakage issues
- Boron deactivation phenomenon
- Optimization of dopant concentration is needed in order to avoid important clusterization phenomena
- SPER activated devices have similar performance than HT spike activated devices

Solutions for activation in 3D sequential integration

Solutions for activation in 3D sequential integration

83

Laser activation

Efficiency of laser ns anneal to activate dopants proven

Protection of bottom MOSFET during laser anneal validated

ightarrow Promising techniques for dopant activation

- → Additionnal work is needed to evaluate its' interest for 3D sequential integration: Find the laser anneal conditions to have the best gate/source-drain selectivity Evaluation of 3D pattern effect on scaled design rules and versus density Evaluation on thin SOI devices Compatibility with scaled ILD thicknesses
- ightarrow Some answers to be found in C. Fenouillet IEDM 2014 paper

Microwave annealing

✓ Equivalent activation level at 150°C lower than SPER

- ightarrow Promising techniques for dopant activation
- → Additionnal work is needed to evaluate its' interest for 3D sequential integration: Evaluation of metal interconnections (temperature depending on conductivity)

Goal: Obtain a selective epitaxy on the source & drain

Standard process: dichlorosilane and HCl flow together

dichlorosilane : deposition of Si and etch on oxide isolation HCL: etching on nitride spacer

Reasonable deposition rate cannot be obtained at temperature below 750°C

Low temperature epitaxy

Cyclic Deposition Etch (CDE) process

Step 2-selective etch steps

→ Use disilane instead of dichlorosilane enable to increase Si deposition rate

 \rightarrow Addition of GeH4 to HCl enable to increase the etching speed

Low temperature epitaxy

Dramatic decrease of Epitaxy thermal budget is achievable via CDE process

Si epitaxy @600°C J-M. Hartmann et al., Semicond. Sci. Technol 2013

SiGe 35% epitaxy @500°C J-M. Hartmann et al., ECS journal 2014

Use of new precursor for deposition such as Si_3H_8 and Cl_2 for etching are promising for further thermal budget reduction [M. Bauer et al., Thin Solid fim 2012]

Work is still needed to lower the epitaxy down to 500°C

BOTTOM FET PROCESS

Low temperature spacer

Requirements:

- Resistance against HF chemistry (epitaxy pre-clean)
- Stability against subsequent epitaxy thermal budget
- Conformal

Some Low-k spacers seem well adapted : Low temperature (<500°C) and lowk (<6) for parasitic capacitance reduction and delay improvments</p>

Fig. 3. TEM (left) and SEM (right) of SiCOH spacers (NFET) $% \left({{\rm NFET}} \right)$

BOTTOM FET PROCESS

BOTTOM FET PROCESS

Some examples of 3D sequential demonstrations

S³ SRAM technology from Samsung

Dopant activation by high temperature spike anneal *

Top active creation by Selective Epitaxy Growth or laser liquid phase recrystallisation**

*Impossible with intermetal lines

** Incompatible with bottom MOSFET stability at advanced nodes and high loss in density due to seed window area penalty

Some examples of 3D structures

Ultimate CMOS technology from AIST (InGaAsOI nFET on SGOI pFET) SBH adaptation with appropriate metallization Top activate creation by In GaAs Direct Bonding

Transistor and Memories with vertical channel

leti

Surrounding gate transistor from Besang Top activate creation by direct bonding Dopant activation made before wafer report

Technology licensed by Hynix

Thin Film Transistor (Poly-Si)

Ceatech

Characteristics	With CMP	Without CMP
SS 2 σ , mV/dec.	117 ± 32	168±59
Vth 2σ, volt	0.82±0.23	1.02±0.35
lon 2σ, u A/um	89 ±23	40±24

High variability due to grain variable orientation and grain boundaries

Low performance compared to cristalline channel

« Epi-like Si FET » from NDL
 Dopant activation by thermal activation at unknown temperature
 Top activate creation by crystallization of amorphous deposition by laser annealing

Carbon nanotubes

Carbon nanotubes transistors from Stanford Top activate creation obtained by report of carbone nanotube

100

Some examples of 3D sequential demonstrations

Cool Cube[™] technology from Leti Dopant activation by SPER Top active creation by SOI direct bonding

Conclusion

3D sequential integration leads to ultra high 3D contact density $1x10^{6}$ /mm² is demonstrated/ > $1x10^{8}$ /mm² is achievable with 14 nm technology

Roadmap driven by transistor performance :3D monolithic N/P

Main advantage: easier and cheaper way to optimize the transistors' performance a path for III-V cointegration with Ge

Roadmap driven by IC performance: 3D mono CMOS/ CMOS

a path for reducing interconnection delay penalty Stacking instead of scaling: Reaching n+1 node with n node technology

Cointegration of heterogeneous functions requiring small grain partitionning Highly miniaturized CMOS image sensors/ NEM with CMOS

Conclusion

Bottom transistor preservation:

Preserved at 500°C for hours (FDSOI with NiPt salicide)

Solution might be available to increase salicide stability above to 500°C

Top transistor process:

- Direct bonding enable to achieve top active layer equivalent to bottom substrate

- Dopant activation with SPE activation leads to similar performance than the high temperature standard process

- FDSOI is a crucial asset to achieve high performance LT CMOS (EOR reduction)

-Laser (nanosecond) is a promising option for dopant activation thanks to local annealing of top layer

<u>Ceatech</u>

Thank you to all co-authors and colleagues that have been working on Cool Cube[™]

B. Sklenard, C. Fenouillet-Beranger, L. Pasini, B. Sklenard, B. Matthieu, L. Brunet, C. Xu, B. Previtali, C. Tabone, F. Ponthenier, N. Rambal, F. Deprat, L. Tosti, L. Hortemel, M-P. Samson, O. Rozeau, O. Billoint, O. Turkyilmaz, H. Sarhan, G. Cibrario, A. Pouydebasque, F. Fournel, L. Benaissa, T. Signamarcheix, A. Seignard, C. Euvrard-Colnat, M. Rivoire, F. Nemouchi, V. Carron, F. Piegas Luce, F. Mazen, P. Besson, A. Royer, C. Agrafeil, P. Coudrain, Julien Arcamone, P-E. Gaillardon, S. Bobba, T. Ernst, C. Deguet, F. Geiger, J-E. Michallet, C. Reita, F. Clermidy, O. Faynot and M. Vinet

Thank YOU for your attention

This work is partly funded by the ST/IBM/LETI Alliance program and by Qualcomm