A Tutorial on Reliability Physics for Post-Moore Era Electronics: An Integrated Material, Devices, and Packaged Systems

Muhammad A. Alam (<u>alam@purdue.edu</u>) Jai N. Gupta Endowed Chair Professor School of Electrical and Computer Engineering West Lafayette, IN

Acknowledgment: B. Mahajan, Y. Chen, W. Ahn, S.-H. Shin, A. Wahab, A. Jain, S. Palit, H. Kufluoglu

The Endless Frontier of Moore's Law!

- Moore's law is dead, long-live Moore's law
- Self-heated FEOL transistors: An enduring challenge
- BEOL-integrated transistors: The next-frontier?
- Rethinking the reliability of power-transistors
- Reliability of 3D Heterogeneously Integrated Package
- Looking ahead: A zero-trust world, active packaging

Why SISC will always remain relevant!

Lundstrom/Alam, Science, 2022

Outline

- Moore's law is dead, long-live Moore's law
- Self-heated FEOL: An enduring challenge
- BEOL-integrated transistors: The next-frontier?
- Rethinking the reliability of power-transistors
- Reliability of 3D Heterogeneously Integrated Package
- Looking ahead: A zero-trust world, active packaging

A short history of reliability physics ...

Self-heated transistors: an enduring challenge

 $T_L = T_A + P R_{th}$

Johnson-Keyes limit (1972) $T_L = T_A + P_0 \times \sqrt{A} \times (\beta/\kappa)$

S. H. Shin, et. al., IEDM Tech. Dig., Dec. 2016, pp. 15.7.1–15.7.4.
M. A. Alam, et. al., IEEE TED, 66, 11, 2019.
M. Cho, et. al., in HCD in Semiconductor Devices, 2015, pp. 287–307

Self-Heating redefines FinFET HCD

D. Jang et al., IEDM Tech. Dig., 2015.
W. T. Chang et al., IEEE TDMR, 15, 1, 2015.
Chabukswar et. al., Microele. Eng., 87, 10, 2010
S. H. Shin et al., IEDM Tech. Dig., 2015

HCD is a complex phenomenon ...

HCD increases with Fin-Number

$$R_{th} \sim N_{fin} \sim W_{sub}^{-1}$$
$$T_L = T_A + P R_{th}$$
$$R_B \sim e^{\frac{E_B}{k_B T_L}}$$

H. Jiang, et. al., Proc. IEEE IRPS, 2016.
H. Jiang, et. al., IEEE EDL, 36, 12, 2016.
A. Gupta, et. al., IEEE TED, 66, 5, 2019.

Packaging increases HCD further ...

Regardless, HCD of logic FET is universal ...

Outline

- Introduction: Moore's law is dead, long-live Moore's law
- Self-heating in logic transistors: An enduring challenge
- BEOL-integrated transistors: The next-frontier?
- The brave-new world of FeFET and NCFET
- Rethinking the reliability of power-transistors
- Reliability of 3D Heterogeneously integrated Systems
- Summary

BEOL-integrated 3D transistor: The next frontier?

- Datta, S et al. (2019). BEOL compatible transistors for monolithic 3-D integration. IEEE Micro, 39(6), 8-15.
- Jiang, Junkai et al. (2019). Ultimate 3D Integration With 2D Materials: IEEE JED 10.1109/JEDS.2019.2925150.
- Wu, J. et al. (2020). A Monolithic 3-D Integration of RRAM Array and Oxide Semiconductor FET for In-Memory Computing in 3-D Neural Network. TED 67(12), 5322-5328.
- Lin, Zehao, et al. "High-Performance In_2O_3 -Based 1T1R FET for BEOL Memory Application." IEEE TED (2021).

BEOL increases temperature further...

PBTI vs. HCD: Extreme Temperature Sensitivity

... well known in TFT literature

Underlying degradation is actually universal!

Outline

- Introduction: Moore's law is dead, long-live Moore's law
- Self-heating in logic transistors: An enduring challenge
- BEOL-integrated transistors: The next-frontier?
- The brave-new world of FeFET and NCFET
- Rethinking the reliability of power-transistors
- Reliability of 3D Heterogeneously integrated Systems
- Summary

Power Solution: Landau switches

A. Jain, APL, 2014

airgap

FE

D

S

Positive and Negative Capacitors

Reliability of FeFET and NCFET: Landau model

K. Karda et al., TED, 2019. N. Zagni, APL, 2020. Reliability Physics of Ferroelectric/Negative Capacitance Transistors for Memory/Logic Applications: An Integrated Perspective, JMR, 2021. A tutorial Introduction to NCFET: https://nanohub.org/resources/23157

Endurance of FETFET .. Si/SiO2 defects

Hot atom damage in FeFET

Outline

- Introduction: Moore's law is dead, long-live Moore's law
- Self-heating in logic transistors: An enduring challenge
- BEOL-integrated transistors: The next-frontier?
- The brave-new world of FeFET and NCFET
- Rethinking the reliability of power-transistors
- Reliability of 3D Heterogeneously integrated Systems
- Looking ahead

Inverting logic vs. Power Transistors

Logic

Power transistors

*GS5 Drain current V_{GS4} Vasa $\frac{4V_{BD}^2}{2} = E_c^3 \, \kappa \epsilon_0 \mu$ Cutoff V_{OS2} Ron Vast V_{BD} (Drain current) Ron In Industry, rma+ Imax SOA is important SOA In(VD) V_{BD}

WBG electronics: Discovery of Ga2O3 ...

Operating Frequency (kHz)

Material Parameters	Si	4H-SiC	GaN	β-Ga ₂ O ₃	Diamond
Bandgap, Eg (eV)	1.1	3.25	3.4	4.85	5.5
Breakdown, Ec (MV/cm)	0.3	2.5	3.3	8	10

TCAD Model ... thermal response

Mahajan et al. "Electrothermal performance limit of β-Ga2O3 field-effect transistors." APL, 115.17 (2019): 173508.

Noh, JEDS 2019 Zhou, ACS Omega 2017

A new SHE/reliability aware Power FOM ..

$$\frac{4V_{BD}^2}{R_{on}} = E_c^3 \kappa \epsilon_0 \mu$$

$$\begin{aligned} \mathsf{R}_{on}(T_{on}) &= \frac{4V_{bd}^2}{\varepsilon\mu_0 E_c^3} \left[1 + \left(\frac{N_D\xi(T_{on})}{N_{ref}}\right)^\beta \right] \left(\frac{T_{on}}{300}\right)^\gamma \frac{\xi(T_{off})}{\xi(T_{on})} \\ Z_{th} &= D \cdot R_{th} + (1-D) \cdot Z_0 \left(1/f\right) \end{aligned}$$

Mahajan, Chen et al., Self-Heating and Reliability-Aware "Intrinsic" SOA, TED, 2022.

alam@purdue.edu

Outline

- Introduction: Moore's law is dead, long-live Moore's law
- Self-heating in logic transistors: An enduring challenge
- BEOL-integrated transistors: The next-frontier?
- The brave-new world of FeFET and NCFET
- Rethinking reliability of power-transistors
- Reliability of 3D Heterogeneously integrated Systems
- Summary

Multi-scale, multi-physics electro-thermal-mechanical environment

Electrothermal reliability of 3D-HI

1. RDL PI dielectric failure (Palit, JAP, 2018)

2. Bond corrosion failure (Asad, IRPS, 2021)

3. Transistor failure due to EM, HCI, NBTI

Packaging reliability requires new techniques

Small

Volume fraction, contrast ratio

Large

Packing in epoxy-glass mold compound

Moisture ingress in polymers & mold-compounds

Dielectric Breakdown: BEOL/RDL/TSV Oxides

Dielectric heating & breakdown rates

$$\frac{dN}{dt} = -N \times \frac{k_B T}{h} \exp\left(-\frac{\Delta G - a\mathbf{E}}{kT}\right)$$

$$\downarrow$$

$$T_F = \frac{h}{kT} \log\left(\frac{1}{1 - \eta}\right) \exp\left(\frac{\Delta G - a\mathbf{E}}{kT}\right)$$

$$\int$$

$$T(t) \approx T_0 + \frac{\bigotimes_r \varepsilon_0 E^2 T_d}{2h} \left[1 - e^{-\frac{2\beta t}{C_P \rho T_d}}\right]$$

$$C_{P}\rho V\frac{dT}{dt} = \omega \varepsilon_{r}^{"}\varepsilon_{0}E^{2}V - \beta A(T - T_{0})$$

Dielectric breakdown in Mold-Compounds

CPI stress aware Front-End design

THERMO-MECHANICAL PROPERTIES OF COMPOSITE

A. Kteyan et al., IRPS 2019

Thermal Crosstalk: Need of a Keep-out-Zone

Sruthi M.P. et al, 2022.

Outline

- Introduction: Moore's law is dead, long-live Moore's law
- Self-heating in logic transistors: An enduring challenge
- BEOL-integrated transistors: The next-frontier?
- The brave-new world of FeFET and NCFET
- Rethinking reliability of power-transistors
- Reliability of 3D Heterogeneously integrated Systems
- Packaging in extreme-environment: Biosensors
- Summary

Extreme packaging: Pharmaceutical vs. Electroceutical

Extreme Packaging: Oxide dissolution in DI water

Extreme Packaging: Ion diffusion in encapsulants

Extreme Packaging and stacked encapsulant

Conclusions: Take-home points

- Moore's law is dead, long-live Moore's law
 - Moore's law will live through 3D integration. Thermal bottleneck is a concern.
- Self-heating in logic transistors: An enduring challenge
 - Serious challenge in application-specific design in a broad range of applications
- BEOL-integrated transistors: The next-frontier?
 - Performance is significant, but reliability could be a concern.
- The brave-new world of FeFET and NCFET
 - Most important reliability issues are classical. New degradation pathways exist.
- Rethinking reliability of power-transistors
 - Self-heating and reliability are first order concerns.
- Reliability of 3D Heterogeneously integrated Systems
 - Many new modes of degradation, especially in harsh environments. Front-end reliability physics can be selectively used for reliability issues involving chip-package interaction.
- New characterization techniques and modeling tools are essential.

