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Purpose

•
 

To explain the basic principles of the charge pumping 
technique for characterising

 
the interface charge in 

MOSFET’s

•
 

To illustrate the application of the technique for the analysis 
of the degradation of MOSFET’s

 
and MOS-related devices, 

for energy and spatial profiling of interface traps

•
 

To discuss the effect of oxide thickness scaling and how 
Charge pumping can successfully be used for analysing

 high k dielectrics

•
 

Targeting both novices as well as experts in the field
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PURPOSE OF CHARGE PUMPING
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Interface characterization techniques

 INDIRECT 
TECHNIQUES 

DIRECT 
TECHNIQUES 

MOS- 
Capacitors 

• LF-CV 
• HF-CV 

• Conductance 
(without gate leakage) 

• DLTS 
MOS-

Transistors 
• Weak inversion 
• 1/f Noise 

• Current DLTS 
• DCIV 
• Charge pumping 

 

Classification of interface characterisation
 

techniques
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What can charge pumping do?

•
 

Measure the interface state density at the Si-
 substrate/gate oxide interface

•
 

Resolution <109

 
states/cm2

 
or better, single trap 

capability

•
 

Determine separate shifts in threshold and flatband
 voltages from interface trap generation

•
 

Determine the energy distribution of interface states 

•
 

Give information on spatial position of interface 
states in the source-drain direction and/or in the 
depth direction

•
 

Measure inversion charge density

•
 

In high-k with thin interface layer : measure density 
of bulk high-k states
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Limerick #1

What is charge pumping ?

It’s a method that works in 2 steps
First electrons are captured on traps
Then we pump in a hole
Causing current with the goal
To be proportional to the density of traps
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Basic principle of charge pumping

Experimental set-up: apply a gate pulse
 measure the substrate current !

DC Ammeter

Pulse generator
Vtop

Vbase
tr tf Scope

Vr
n n

p-Si

S D
G
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Sweeping between inverse and accumulation

Vth

VFB

tL tr tH tf

A

B

A
B
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Charge pumping: 1st
 

order understanding

1

ramp up

ramp down

4

2

e-

 
from source/drain to traps

e-

 
in traps to substrate

accumulation

3

inversion

Isub
 

=q.A.Nit
 

.f
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SIMPLE OPERATING CHARGE PUMPING PRINCIPLE 

S

_____

itGSScp ΔΨD Aq ff.QI ==

)dE(ED A q  Q
finv

facc

E

E
itGss ∫=

)dE(ED A q  Q
finv

facc

E

E
itGss ∫=
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Simple operating principle

Method B
Pulse level in inversion is fixed
Pulsing the surface into accumulation 
with increasing amplitudes

Method B Method A

Method A
Pulse level in accumulation is fixed
Pulsing the surface into inversion 
with increasing amplitudes

Icp

 

= f.Qss

 

= f q A Nit

 

Icp

 

= f.Qss

 

= f q A Nit
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SIMPLE OPERATING PRINCIPLE

Method C
Varying the pulse base level from inversion to accumulation 
while keeping the pulse amplitude constant

Strong dependence 
on pulse shape not 
explained by 1st

 
order 

model
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Limerick #2

Is this model correct ?

In reality there is a bit more to it
‘cause the electrons in the traps can emit
And the holes do as well
So the theory becomes a hell
And so we are in a very big sh.t
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SHOCKLEY-READ-HALL THEORY



SISC Tutorial 2008
© imec 2008 17

SHOCKLEY-READ-HALL THEORY 

Detailed balance in conduction band:
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SHOCKLEY-READ-HALL THEORY

Detailed balance in valence band:
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SHOCKLEY-READ-HALL THEORY

•
 

Electron emission to conduction band: 

•
 

Electron capture from conduction band:

•
 

Hole emission to valence band:

•
 

Hole capture from valence band:

( ) ( ),tETpTnTTTpn Tf c  )(Ee - t),(Ef-(1  )(Ee  (c  
,

++=
⎟
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Steady-state 
hole emission

Non-steady-state 
hole emission

Non-steady-state 
electron emission

Steady-state 
electron emission

Electron

 
capture

Hole

 
capture

(Groeseneken

 

et al, IEEE TED, p. 42, 1984)

Charge pumping : 2nd
 

order understanding
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Thermal emission/recombination

Different energy regions 
associated with the four current 
components

I1 = trapping of electrons
I2 = emission of electrons
I3 = trapping of holes
I4 = emission of holes

ICP = I3 - I4 = I1-I2
= q f AG Dit (Eem,e - Eem,h)

(Groeseneken

 

et al, IEEE TED, p. 42, 1984)

I1
I2

I3
I4

I2

I1

I3

I4

Ec

Ev

EF,inv

EF,acc

Eem,h

Eem,e

Ei

Ec

Ev

EF,inv

EF,acc

Ei
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Thermal emission/recombination

(Groeseneken

 

et al, IEEE TED, p. 42, 1984)

From SRH emission theory it can be 
shown that Eem,h

 
and Eem,e

 
are 

given by:

Eem,h

 

(t) = Ei

 

+ kT
 

ln(σp

 

vth

 

ni

 

tem,h

 

)

Eem,e

 

(t) = Ei

 

- kT ln(σn

 

vth

 

ni

 

tem,e

 

)

Assumptions:
-

 

n.s.s. emission times are sufficiently long
-

 

n.s.s. emission occurs only if VFB

 

<VG

 

<VT

Icp

 

= q f A Dit

 

(Eem,e

 

– Eem,h

 

)
f

A

TFB
eem,

r
A

TFB
hem,

t
ΔV

VV
t

t
ΔV

VV
t

×
−

=

×
−

=

I2

I1

I3

I4

Ec

Ev

EF,inv

EF,acc

Eem,h

Eem,e

Ei

Ec

Ev

EF,inv

EF,acc

Ei
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CHARGE PUMPING THEORY

Dashed lines:

 

Eem,h

 

(0) and Eem,e

 

(0)
Solid lines:

 

Exact values of Eem,h

 

and Eem,e
Squares:

 

Approximations for Eem,h

 

and Eem,e

Pulse transient time dependence of the emission levels
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Charge pumping expressions
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Frequency dependence

Frequency dependence of ICP

 

for square pulses and 
triangular pulses with α

 
= 0.5 and α

 
= 0.15. 
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Thermal emission/recombination

For triangular pulses:
Qcp

 

= Icp

 

/f
 

vs. log(f) is a straight line

σnσp =
1

vthni
⋅

ΔVA
| Vt −Vfb |

⋅2fo

Dit =
log e

2⋅q ⋅kT⋅AG
⋅Slope

(Groeseneken

 

et al, IEEE TED, p. 42, 1984)

fo

Slope
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EXPERIMENTAL RESULTS

Influence of

High level of gate voltage pulse Reverse voltage at source & drain
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Amplitude and reverse voltage dependence

Influence of high level of gate voltage pulse 
and of reverse voltage at source and drain 
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CHARGE PUMPING THEORY

Temperature dependence of the emission levels

Dashed lines:

 

Eem,h

 

(0) and Eem,e

 

(0)

Solid lines:

 

Exact values of Eem,h

 

and Eem,e

Squares:

 

Approximations for Eem,h

 

and Eem,e
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TEMPERATURE DEPENDENCE

ICP

 

(T) = -aT
 

–
 

bTLnT
 

+ c

gitG

itG

hem,eem,i*itG

EDqfAc
D4qkfAb

ttK
m
3kσInD2qkfAa

=

=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

with

Measured data can be 
fitted to this analytical 
expression yielding a 
constant Dit

 

and σ
 

in 
the temperature range 
from 90K to 380K

-1-210
it eVcm 1.8x10  D =

2-15 cm 1.3x10  =σ

•
 

Temperature depence
 

of ICP

 

is of the general form:

(Van den bosch

 

et al., IEEE TED, p. 1820, 1991)
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Dependence on temperature

At low T, less thermal emission, hence 
more recombination and higher Icp

(Van den bosch

 

et al., IEEE TED, p. 1820, 1991)
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TEMPERATURE DEPENDENCE
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CP  DA kT q 2
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Method C: Base level technique

Region 1: Vbase<Vtop<Vfb<Vt
 no CP-current

Region 2: Vbase<Vfb<Vtop<Vt
 transition from 0 to Icp,max

Region 3: Vbase<Vfb<Vt<Vtop
 normal CP-regime

Region 4: Vfb<Vbase<Vt<Vtop
 transition form Icp,max

 
to 0

Region 5: Vfb<Vt<Vbase<Vtop

Principle of the base level technique

Icp

VbaseVFBVT-²VA

Vtop

Vbase

²VA

VT
VFB

1 2 3 4 5
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IMPROVEMENTS TO THE MODEL

•
 

Experimental n-channel charge pumping 
characteristics

W/L = 100μm / 2μm
Freq = 1MHz
Vr

 
= 0.1V
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IMPROVEMENTS TO THE MODEL

New definition of threshold and flatband voltage for charge 
pumping measurements

sthp
cp

sthn
cn pvσ

1                                      
nvσ

1
== ττ

Vt

 

=
 

Vg

 

where ns

 

is large enough for electrons to be captured in fast 
interface traps during the high part of the gate pulse: Vm

 

( minority 
carriers )
Vfb

 

=
 

Vg

 

where ps

 

is large enough for holes to be captured in fast 
interface traps during the low part of the gate pulse: VM

 

( majority 
carriers )

thp
s

thn
s vσ

4fp                                 
vσ

4fn ==

314
s

215
n cm102ncm102σ100kHz,f  e.g. −− ×=→×==
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IMPROVEMENTS TO THE MODEL

Conventional definition:

Comparison with conventional definitions of Vt

 

and Vfb

CP-definition:

0)s(ΨgVfbV ==
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⎞
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σNv
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q

kT
s(ΨgVMV

σv
4f/kT)sexp(-qΨ Np pth

pth
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IMPROVEMENTS TO THE MODEL

Difference between Vt

 

and Vm

 

and between Vfb

 

and VM  for 
various doping levels N
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IMPROVEMENTS TO THE MODEL

Frequency dependence of “threshold”
 

(Vm

 

) and 
“flatband”

 
(VM

 

)  voltage 

Vm

 
and VM vs

 
frequency

Symbols = experiment

 Solid lines = theory

Charge per cycle vs

 
base level at 

various pulse frequencies
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IMPROVEMENTS TO THE MODEL

Influence of temperature on Vm
 

and VM
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IMPROVEMENTS TO THE MODEL

•
 

Determination of Vt

 

and Vfb

 

using 
MINIMOS

Influence of edge effects
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IMPROVEMENTS TO THE MODEL

•
 

Spatial dependence of Vt

 

and Vfb

 

near source 
and drain
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Influence of device edges

source

gate

drain
Vth

VFB

already
pumping

not
pumping

1 2

Icp

Vbase

1

2

(Heremans

 

et al., IEEE TED, p. 1318, 1989)
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IMPROVEMENTS TO THE MODEL

Influence of edge effects at source and drain: 
theory versus experiment
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Influence of device edges

Edges of base level curve contain information on the interface 
characteristics at S and D and at the field edges
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Influence of device edges

Fixed channel  width 
Varying channel length 

LOCOS edge sensitive

Fixed channel length
Varying channel width

S/D edge sensitive



SISC Tutorial 2008
© imec 2008 48

Interface trapped charge leads to a spread 
in the transition regions of the base level curves

for tox = 20 nm:

Dit

 

= 1010

 

cm-2eV-1

 

=> spread = 10 mV

Dit

 

= 1011

 

cm-2eV-1

 

=> spread = 100mV

Dit

 

= 1012

 

cm-2eV-1

 

=> spread = 1 V 

IMPROVEMENTS TO THE MODEL

Influence of interface trapped charge
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IMPROVEMENTS TO THE MODEL

E = 25 keV
Qe-beam = 5x10-5 C/cm2

Ie-beam = 0.5x10-7 A
time = 250s

Example: virgin and irradiated MOSFET
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Application: MOSFET degradation

Change in CP-curves under high-field Fowler-Nordheim
 

injection

Vg = +12V, t = 0s (a), 1s (b), 10s (c), 100s (d), 500s (e)
Vg = -12V, t=1s (f)

Vg

Oxide SubstrateGate

(Heremans

 

et al., IEEE TED, p. 1318, 1989)
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Example: positive charge and interface traps in n-channel 
MOSFET’s

Curve I :
 CP of region I

Curve II :
 CP of region II

Curve III :
 CP of whole transistor

Curve IV :
 CP of whole transistor 

with disconnected drain

Sensitive to non-uniform degradation
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Example: channel hot hole injection in n-MOSFET 

tox

 

= 27nm
 Leff

 

= 1.7μm
 W = 100 μm

Stress conditions:

Vg

 

= 1V
 Vds

 

= 8V
 tstress

 

= 1000s

Non-uniform degradation of MOSFET’s
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NON-UNIFORM DEGRADATION OF MOSFET’s

Example: channel hot hole injection in p-MOSFET 

tox

 

= 28nm
 Leff

 

= 1.7μm
 W = 200 μm

Stress conditions:

Vg

 

= -1.4V
 Vds

 

= -8.5V
 tstress

 

= 1000s
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NON-UNIFORM DEGRADATION OF MOSFET’s

Example: channel hot electron injection in 
an n-SONOS transistor

tox

 

1 = 2 nm
 tnitride

 

= 30 nm
 tox

 

2 = 5 nm
 Leff

 

= 6 μm
 W = 20 μm

Stress conditions:

Vg

 

= 12V
 Vds

 

= 12V
 tstress

 

= 10s
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NON-VOLATILE MEMORY CELL 
DEGRADATION

Floating gate memory cells

Endurane

 

characteristic for 
uniform WRITE operation

Charge pumping characteristics 
for WRITE operation
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NON-UNIFORM DEGRADATION OF MOSFET’s

Degradation characteristics of split-gate transistors

Source gate area:
no degradation observed

Drain gate area:
interface traps and negative 
trapped charge observed

D. Wellekens

 
et al, IEEE TED, p. 1992, 1995
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NON-UNIFORM DEGRADATION OF MOSFET’s

Degradation characteristics of split-gate transistors

Full transistor pumping 
with drain disconnected

Full transistor pumping 
with source disconnected

D. Wellekens

 
et al, IEEE TED, p. 1992, 1995
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Charge Pumping on LDMOS devices

•
 

40V LDMOS
•

 
Vge

 

and Vgh

 

as from TCAD
•

 
Uniform Nit

 

in thin oxide
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Charge Pumping on LDMOS devices

•
 

LDMOS stressed at Vds

 

=Vgs

 

=15V (low Vds

 

, high 
Vgs

 

) Nit formation at the source.
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Charge Pumping on LDMOS devices

•
 

LDMOS stressed at Vds

 

=40 Vgs

 

=3V (low Vgs

 

, high Vds

 

) 
Nit formation in accumulation region or under the 

birds beak.
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SOI-CHARACTERIZATION

SOI-MOSFET Structures for charge pumping

Five terminal SOI-MOSFET
[Wouters et al, 1989]

Gated P-I-N diode
[Elewa et al, 1988]
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SOI-CHARACTERIZATION

•
 

SOI-MOSFET charge pumping 
characteristics

Frequency dependence of Icp

 
for back and front interface

Base level curve of the back 
interface
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Characterization of Finfet
 

interfaces

•
 

Sidewall interface quality important for drive 
current !

•
 

Use charge pumping on gated Fin-diode with 
various geometries

Vd VsubVg

Isub

N+ P+

BOX

P-
 

SOI

LeffX’

N+ P+

T1 T3

Y

Y’

X

gate 
stack

fin 
sidewall

fin
bodyHfi

n

Wfin fin 
topwall

Vd Vsu
b

Vg
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Characterization of fin interfaces

Nit|T
 

= 2Nit|SW
 

Leff
 

Hfin
 

+ Nit|TW
 

Leff
 

Wfin
 

Nit|T
 

= 2Nit|SW
 

Leff
 

Hfin
 

+ Nit|TW
 

Leff
 

Wfin

 
H 2L

c  N
fineff

SW|it =

eff
TW|it L

m  N =
Kapila

 
et al., IEEE Electron Dev. Lett., vol. 28, p. 232, 2007 
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Energy profiling

Emission levels can be modulated 
by rise/fall times or by temperature
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Energy profiling: method 1

changing tf scan in top part 
of the bandgap

Eem,e

 

(t) = Ei

 

+ kT
 

ln(σn

 

vth

 

ni

 

tem,e

 

)

changing tr scan in bottom part 
of the bandgap

Eem,h

 

(t) = Ei

 

+ kT
 

ln(σp

 

vth

 

ni

 

tem,e

 

)

r

cp
hemit

f

cp
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td
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ED
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ED
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)(

ln
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,

⋅⋅⋅
−=

⋅⋅⋅
−=

1

1
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Energy profiling: method 1

Example of energy distribution of interface traps using
Method 1

Groeseneken

 

et al
IEEE TED, p. 42, 1984)
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Energy profiling: method 2

Varying temperature at 
fixed emission window ΔE ⎟

⎟
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⎟
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f,rΔE)o(EitDfAq

)2f,r(tcpI)1f,r(tcpIf,rS

(Van den bosch

 

et al. IEEE TED, p. 1820, 
1991)
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Energy profiling: method 2

Example of energy distribution of interface traps using
Method 2 (Spectroscopic charge pumping)

(Van den bosch

 

et al.

 IEEE TED, p. 1820, 1991)
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Energy profiling: method 3

Vtop

Vbase Period

te

Ve2

Ve1

VT

VFB

Ec

Ev

Et2

Et1

filled traps

e

e

e

cp

G
tit dψ

dV
dV
dl

A f q
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Energy profiling: method 3

Icp
 

vs
 

length at midlevel te
(Ancona

 

and Saks, J. Appl. Phys., p. 4415, 1992)

Energy distributions of electron 
and hole emission and 
capture cross sections
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INTERFACE TRAP ENERGY DISTRIBUTIONS

Energy range: 
Bandgap

 
can be accessed from ±

 
0.52 eV

 
to ±0.15 eV

–

 

minimum midgap

 

value is limited by diode reverse leakage current at 
high T, gate leakage current and lowest allowable measurement 
frequency

–

 

midgap

 

region is addressed by the variable base level CP-technique

Sensitivity:
 Measurement sensitivity is in the range of 109

 

- 1010

 

cm-2

 

eV-1

 depending on transistor size and resolution of the current 
meter
–

 

in the integral form, the sensitivity of CP can be as high as 108

 

cm-2 eV-

 1, which is two order of magnitudes better than other interface 
characterization techniques (CV, conductance)

Energy resolution:
 Energy resolution is in the order of kT, and thus improves at 

lower temperatures
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Lateral profiling: method 1

First class of methods: scan the lateral distance by increasing the 
space charge region around source and drain (increase Vr

Ancona

 

& Saks, IEEE TED, p. 2221, 1988
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Lateral profiling:method
 

2 

Second class of methods: 

Get information on lateral 
profile from change of 
transition edges of base 
level or amplitude scans

Tsuchiaki

 

et al., IEEE TED, p. 
1768, 1993
Chim

 

et al., J. Appl. Phys., vol. 
81, p. 1992, 1997
Furnemont

 

et al., IEEE EDL, p. 
276, 2007
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Lateral profiling: method 2

Lateral profiles of Dit

 
and Dot are extracted from change in 

transition edges of base level curves 

Tsuchiaki

 

et al., IEEE TED, p. 1768, 1993
Chim

 

et al., J. Appl. Phys., vol. 81, p. 1992, 1997
Furnemont

 

et al., IEEE EDL, p. 276, 2007
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Vertical profiling

Method: fill traps deeper into the oxide by increasing the time 
available for trapping (th

 

and tl), i.e. decreasing the frequency

(Paulsen et al., IEEE TED, p. 1213, 1994)
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Vertical profiling

)/exp()()(
)/exp()()(

hpp

enn

xx
xx

λσσ
λσσ

−⋅=

−⋅=

0
0

Maneglia

 

and Bauza, J. Appl. Phys., vol

 

79, p. 4187, 1996
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More accurate analysis
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M. Masuduzzaman

 
et al, TED Dec 2008 
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More accurate analysis

M. Masuduzzaman

 
et al, TED Dec 2008 
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GEOMETRIC COMPONENTS

What is a geometric component ?

If part of the free minority carriers are  recombining with majority 
carriers, they will be measured as Icp, and cannot be 
distinguished from carriers that recombine at interface

 
traps

(Brugler & Jespers, 1969)
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GEOMETRIC COMPONENTS

How to avoid a geometric component? 
geometric component

•
 

Use of long fall and rise times: > 10ns ( e.g. triangular pulses
 

)
•

 
Use of reverse voltage at source and drain

•
 

Avoid unfavorable transistor geometry: W/L>1, small
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GEOMETRIC COMPONENTS

•
 

Switching off of a MOSFET from inversion to 
accumulation

Lateral drift/diffusion phase Vertical diffusion phase

G. Van den bosch

 
et al., IEEE EDL, p. 107, 1993
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GEOMETRIC COMPONENTS

a. self-induced drift: 
caused by surface 
potential gadient

Model lateral drift/diffusion phase

b. diffusion: 
caused by concentration 
gradient

   
ott

ot(0)invn(t)
_____

invn
+

=

t)
L
Dπexp(  

π
(0)8n(t)n 2

g

n
2

2
inv

_____

inv =

(0)invnn8qμ

oxC2
gπL

ot =with

L = 100μm

G. Van den bosch

 
et al., IEEE EDL, p. 107, 1993
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•
 

Influence of pulse 
transition time

Influence of channel length

GEOMETRIC COMPONENTS
Geometric component as a function of 

Channel length and pulse transition time

G. Van den bosch

 
et al., IEEE EDL, p. 107, 1993
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Inversion CP can measure inversion charge 
density in MOSFET

Geometric component has been used to extract inversion 
charge in high k MOSFET’s, as a replacement of Split-CV 
measurements (to avoid charge trapping effects) 
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Impact of scaling oxide thickness

Classical Charge Pump Technique not suitable for ultra-thin 
oxides due to dominance of gate leakage current !

P. Masson et al.
 IEEE EDL p. 92, 1999

W/L = 10x8 μm2

Tox

 

= 1.8 nm

-2 -1 0 1-20

-15

-10

-5

0

5
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15

Vbias

 

[V]

I cp
[μ

A
]

1.4 nm oxide

Icp,max

 

?

Courtesy G. Sasse,
Twente

 
Univ.

f =10 MHz
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Impact of gate leakage on CP

[ ]dt)t(VI
T
1I

pT

0
GGB

p
Tunnel ∫=

P. Masson et al., IEEE EDL p. 92, 1999

For not too high gate leakage 
currents, charge pumping 
current can be corrected for it
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RF-
 

Charge Pumping: increase the frequency

Alternative solution: increase the 
frequency. RF-CP

Issue with calculating the gate 
voltage waveform: gate 
impedance is dependent on 
voltage !
More details: G. Sasse

 
et al.

ICMTS 2005

~

Bias T

VbiasAgilent
 Signal

Generator
E8251A

A

Two-port
GSG MOSFET
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RF-
 

Charge pumping method

Example: tox
 

= 1.4nm

At the highest frequencies (>100MHz) the normal 
voltage and frequency dependence for CP is restored

G. Sasse
 

et al, ICMTS 2005

Dit
 

= 5x1010cm-2eV-1
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On-chip circuit to study AC NBTI up to GHz range 

divider

VD

VS

VB

VG

Vsel

VCC

R
O

mux

DUT:
single pFETVsel = Vcc

buffer

0V

Vcc

Vout

DUT: inverter

Vsel = 0

Ring Oscillator  @ 2 GHz
 divider = 1, 2, 4, 8, 16, 64, 256 (~7 MHz –

 
2 GHz) 

Lower frequencies supplied externally 
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Circuit allows Charge Pumping in GHz range

120
100

80
60
40
20
0

0.0 0.5 1.0 1.5 2.0
VS = VD = VB (V)

-I B
(n

A
) increasing

stress 
time

Vselect = Vcc = 2 V
CP:

 
f = 1.9 GHz

Increase in Nit after AC NBTI stress observed.

ΔNit = ΔIB / q f W Leff
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For N individual traps:

Icp
 

= f q N
 

Dit
 

=109cm-2eV-1, W=L=0.5µm
 N = 2.5 traps

 at 3 MHz: Icp
 

= 0.48pA/trap

Single trap characterisation

L

W

1
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3

4 5

Ec

Ev
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Dit(E) L

W

Ec

Ev

Continuous distributions:
 

Icp
 

= f q AG
 

Dit
 

(E) ²E
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Single trap characterisation

Creation of 1 single trap by a short 
hot carrier stress @ Vg=1.35V, 

Vd=3.5V

Base level CP-curve, showing 
stepwise behavior due to individual 

traps

(Groeseneken

 

et al., IEEE TED, p. 940, 1996)



SISC Tutorial 2008
© imec 2008 103

Single trap characterisation

(Saks et al, Appl. Phys. Lett., p. 1383, 1996)

CP-curve for a MOSFET with 
2 traps only  (f=1MHz)

Qcp
 

vs. rise/fall time shows 
exponential decay by SRH-

 electron emission with 
τ=1.7µs

τ=1.7μs
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Charge pumping on high k

Amplitude sweep

Vbase is fixed

Vpeak is varied

ICP

Vpeak

Amplitude sweep (at fixed 
base level) is used to measure 
charge in HfO2 layer

Amplitude sweep

Vbase is fixed

Vpeak is varied

ICPICPICP

Vpeak

Amplitude sweep (at fixed 
base level) is used to measure 
charge in HfO2 layer
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N
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-1
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-2
)

Vpeak (V)
Amplitude sweep CP-level is not constant for toplevel

 
> 

Vt: points to bulk trap states contributing to CP-signal !
Amount of traps measurable depends on amplitude and 
frequency of the CP gate voltage pulse
NCP

 

~ 3·1012

 

cm-2

 

for a 1 ms charging time and a Vpeak

 

of 
2V)A. Kerber, INFOS2003A. Kerber, INFOS2003
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Bulk trap Charge Pumping

Vth

VFB

tL tr tH tf

tL
 

= time at low VG
tH

 

= time at high VG
tr

 

= rise time
tf

 

= fall time

Classical charge pumping 
happens during 

rise and fall time only

Qc

 

= pumped charge per cycle
= ICP

 

/f 
= qANit
= independent

 
of frequency

 in classical
 

formula

Bulk trap charge pumping happens during 
the high and low time of the pulse

but Qc is NOT
 

independent of 
frequency when bulk states 

are pumped!
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Charge pumping on high k

Bulk charge pumping
-

 
happens during tH

 

and tL
-

 
The longer tH

 

and tL
 

, the further away from the interface traps 
can participate in the charge pumping

-
 

charge/cycle depends tH
 

,tL
 

, in other words on frequency

inversion

During tH
 

bulk states can also be 
occupied through tunneling

accumulation

During tL
 

bulk states can also be 
emptied through tunneling 
and recombine
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Charge pumping can sense high-k trap 
density

Inversion
interface traps are filled with electrons during voltage ramp (conventional CP) 
Pumping)

 High-k bulk traps are also filled through tunneling during tH

Accumulation
Interface states are emptied and electrons recombine during  voltage ramp-down

 High-k bulk states are also emptied by tunneling and electrons recombine during 
tL

high-k

SiO2

inversion

high-k

SiO2

accumulation



SISC Tutorial 2008
© imec 2008 109

Variable amplitude Charge Pumping can scan 
trap energy spectrum 

Traps in dE = extra traps measured when
changing the amplitude over dVA

Traps close to 
SiO2

 

/high-k
 

are sensed Measure Deff

 

(in eV-1cm-2)

dVSiO2

dVA
E dE

substrate
SiO2 High-k gate
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Defect ‘band’
 

near HfO2
 

conduction band 
edge

Trap depth from top of HfO2

 

conduction band
Shallow traps are sensed at high gate voltage

These are responsible for Vth

 

-hysteresis

8x1012

6

4

2

0

D
H

FO
,e

ff (
cm

-2
eV

-1
)

1.41.21.00.80.60.4
trap depth (eV)

2.0 1.5 1.0 0.5 0.0
Gate voltage (top pulse level) (V)

charge pumping 
with 
f=5 kHz
Vbase = -1 V

area = 5x10-7cm2 SiO2 high-k

defects



SISC Tutorial 2008
© imec 2008 111

Charge pumping to sense high-k bulk traps 

•
 

At low frequency 
–

 

bulk HfO2

 

traps are sensed

•
 

At very high frequency 
–

 

no bulk traps 

–

 

pure Si/SiO2

 

interface states

–

 

=conventional Charge Pumping

> frequency 2frequency 1

e-

}

DHFO

(trap density at f2
 

) 
–

 
(trap density at f1

 

)
= fraction of bulk HfO2 trap density
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Frequency scan for bulk states

Interface states at high frequency
The lower the frequency, the more bulk traps

4x1011

3

2

1

0

tra
p 

de
ns

ity
 (c

m
-2

)

104 105 106

frequency (Hz)

Vamp = 1.6 V
Vbase = -0.7V
VG,stress = 2.7 V

 initial
 75 s
 2555 s

SiO2

 

/HfO2

 

stack
e-

}

DHFO

Degraeve

 
et al

IEDM 2003
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Principle of distance and energy scanning 

dVSiO2

dVA

substrate
SiO2 High-k

Gate
(metal)

dE

Scan depth at short charge time 

dE

Scan depth at long charge time 

Two main parameters: charge time and amplitude
1)

 
the trap distance from the injecting interface tch controlled

2)
 

the trap energy level VA controlled

Parameters 
not 
completely 
separated !
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Variable tcharge
 

-tdischarge
 

charge pumping (VT2CP)

6.0x10
10

5.0

4.0

3.0

2.0

1.0

0.0

T
ra

p
 D

e
n

si
ty

 [
cm

-2
]

10
-6

10
-5

10
-4

10
-3

2nm HfO
2
+10s H

2
O

ALD / std (350,3m)

Vamp= 1.3V

Vbase= -0.4V

Tr

 

=Tf

 

= 300ns

Increasing
tcharge

Variable tdischarge

 
with fixed charge time
Duty cycle = variable I

II

III

IV

Discharge time [s]

tcharge

tdischarge

M.A. Zahid, IRPS 2007
M. Toledano-Luque, TED 55(11)
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Basic interpretation VT2CP

I

II
III

T
ra

p
 D

e
n

si
ty

 [
cm

-2
]

Tdischarge [s]

0.5nm

IV

1nm

SiO2 HfO2

tSiO2/HfO2
tsat

Depth [nm]

~1µs ~30μs

substrate

gate

High-k
Interface layer

substrate

gate

substrate

gate

pulse=
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Application example 1: VT2CP to characterize process 
dependence of defects in SiO2

 

and high-k

4.0x10
10

3.0

2.0

1.0

0.0

Δ
T
ra

p
 D

e
n

si
ty

 [
cm

-2
]

10
-6  10

-4  10
-2

TDISCHARGE [s]

Tcharge = 560µs

Example :
SiO2

 

interface 
layer + 40 cy ALD 

HfO2

SiO2 HfO2

Short water pulse
High Cl-content

Long water pulse
Low Cl-content

•
 

Position information of dielectric quality
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Modeling scanning distance
-

 
Consistent with measured data

12x1012

10

8

6

4

2Tr
ap

 d
en

si
ty

 (c
m

-2
)

10-9 10-8 10-7 10-6 10-5 10-4 10-3

Pulse charge time (s)

 Vtop = 3 V  
 Vtop = 4 V  
 Vtop = 5 V 

(1)

(2)

distance [m]

Fi
lli

n
g
 f

ac
to

r 
(f

T
)

SiO2 Al2

 

O3

ttrapping

 

[s]

S
ca

nn
in

g 
di

st
an

ce
 [m

]

VG

 

2 5 V

SiO2

Al2

 

O3

(1) Scanning rate of SiO2

 

~ 0.19nm/dec
(2) Intersection for SiO2

 

/high-k: 
~60us for 0.87nm SiO2

σ

 

(SiO2

 

)= σ

 

(Al2

 

O3

 

)= 2x10-18

 

[cm2]
m*(SiO2

 

)=0.47m0

 

; m*(Al2

 

O3

 

)=0.35m0
Ec_off(SiO2

 

)=3.1eV; Ec_off(Al2

 

O3

 

)=2.6eV
Si/ SiO2

 

0.87nm/ Al2

 

O3

 

10nm

Scanning
distance

See Poster M.Cho, SISC 2008 
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Various regions accessible dependent on channel 
length

 

n+ Poly

n+n+

ICP

(a)

VS = 0

p- substrate

VPulse

VD = 0

A

B

0 10 20 30-2

-1

0

1

2

A

B

(b)
x [Å]

E-
E i

[e
V]

VH=2.2V,VL=-3.0V     
tr=tf=0 

T=300K, f=1kHz

0 10 3020

2

1

0

-1

-2

M. Masuduzzaman

 
et al, TED Dec 2008 

A = ‘classical’

 
charge pumping mode

B = quasi-geometric component (only for long channel lengths)
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CONCLUSIONS

Charge pumping is a powerful tool for MOSFET Interface 
characterization

Based on a thorough insight in the physical mechanisms 
that are governing the charge pumping current, the 
interpretation of the results has been improved over the 
last decade, leading to a widespread use of the technique

Charge pumping allows to determine mean values of 
interface trap density as well as energy distributions over 
a large part of the semiconductor energy gap

Charge pumping allows to determine both uniform and 
non-uniform degradation damage in small area MOSFET’s

Charge pumping has proven its potentials in various 
fields, such as MOSFET-reliability, non-volatile memory 
cell characterization, SOI MOSFET characterization, 
radiation damage, a.s.o
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Limerick #3

This is all I had this evening my dear
I hope that everything I told you was clear
And if it wasn’t, I’m sorry
But let me tell you, don’t worry
It will become much simpler after a beer



Thank you
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Model for instabilities in high k dielectrics

Basic features:
-

 
At flatband

 
condition defect band is located above Ec

 
in the Si

-
 

Defect band near the SiO2 layer moves ‘fast’
 

with Vg:
 dE/q = dVg

 

· (tSiO2

 

/EOTstack)
-

 
Efficient charging for positive gate bias

-
 

Efficient discharging for negative gate bias

V
g

= +2VV
g

= -2V

p-Si

Flatband

SiO2HfO2
n-poly 
gate

A. Kerber
 

et al, IRPS 2003A. Kerber
 

et al, IRPS 2003
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Vt

 

-instability in SiO2

 

/HfO2

 

stacks: 
Comparison of Pulsed and ‘DC’

 
measurements

Vt

 

instability due to charging is underestimated by ‘DC’
 measurements

Charging is leaking out during slow measurements
For application, pulsed measurements more relevant
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100
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   solid symbols
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 W=10 μm 
 L=1 μm
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et al, IRPS 2003
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