

43rd IEEE Semiconductor Interface Specialists Conference

Resistive switching materials and devices for future memory applications

Dirk Wouters

Principal Scientist Memory

Tutorial SISC San Diego, 5 December 2012

imec

IMEC 2012

Need for new Non Volatile Memory?

RRAM : Memory Structure

Device Resistive Switching Behavior

RRAM: Status

Need for new Non-Volatile Memory ?

- Growing NVM market
- Flash scaling issues
- New opportunities?

NVM market is growing exponentially

Flash Storage Gigabyte Growth Trends

160 B									_	
140 B										
120 B								_		SSDS
100 B										
80 B										Mobile
60 B										
40 B					_					
20 B										Traditional
0 B										
	CY 2008	CY 2009	CY 2010	CY 2011	CY 2012	CY 2013	CY 2014	CY 2015	CY 2016	
Source: Micron & Gartner										

NVM Growth drivers

D.WOUTERS SISC 2012

Smartphones MILLIONS OF UNITS σ 1,200 1,000 ~15X 800 ę 600 400 ß 200 0 2010 2011 2014 2015 2012 2013 24 Average Capacity in GB*

Tablets

PC SSD

IMEC 2012

Slide courtesy G.Jurczak, imec

Main Non-Volatile Memory = FLASH

Operation based on floating gate transistor

- threshold voltage is shifted by putting (**PROGRAM**) or removing (**ERASE**) charge from the floating gate (by hot carrier injection or tunneling)
- **READ-OUT** by selecting element and current sensing
- mainstream nonvolatile memory technology of today due to high CMOS compatibility and high quality of silicon dioxide
- NOR and NAND type

Cell configurations : NOR

- ► NOR : ¹/₂ drain (BL) contact/cell
 - fast random access, fast programming, robust \rightarrow code (Cellular)
 - Larger cell size ~10F²

Cell configurations : NAND

- NAND : contactless:
 - slow access (but fast burst read), low program power \rightarrow data
 - Smallest cell size : ~4F²

NAND = minimal cell size memory !!!

NAND Flash is TRUE Cross-Point (XP) memory ! 2F BL

Success of FLASH = small IT cell & scalability

From IMST Whitebook 2007

FLASH scaling trends and limits

imec

NAND Flash scaling issues

Charge = quantized !

Flash scalability based on **charge density** <> total charge DRAM Hower, ultimately charge is made up from **electrons**...

- At 20nm, less than 100 electrons are present on the FG for Vt=1
- ▶ If 20% charge loss is the spec, we talk about ~10 electrons...
- for 10 yrs retention, I_{leak} << I e/yr...</p>

Scaling advantage of new **non-charge based** memories concepts ?

imec

IMEC 2012

D.WOUTERS SISC 2012

K.Prall, NVSMW, 2007

Flash explores other scaling routes

Multi-level programming

- 2-3-4 bits/cell
- Currently implemented
- ▶ Planar \rightarrow 3D Flash

- Effective cell area : divided by number of layers!
- Cost-effective integration to stack bits vertically
- Different 3D concepts (BICS, TCAT, VSAT)
- Not (yet) in production

Flash BIT scaling

Any new technology competing with Flash should enable *all* scaling routes

imec

Performance degradation of scaled Flash

Latency GAP between DRAM and NAND

Opportunity for new class of (NV) memories : **Storage Class Memory** (SCM) ~ "performant FLASH"

imec

DIFFERENT CLASSES OF SCM

Storage type SCM : (close to HDD)

a high-performance solid-state drive, accessed by the system I/O controller much like an HDD

Memory type SCM: (close to DRAM)

should offer a read/write latency of less than I µs. These specifications would allow it to remain synchronous with a memory system, allowing direct connection from a memory controller and bypassing the inefficiencies of access through the I/O controller.

ERD ITRS meeting Potsdam 2011

D.WOUTERS SISC 2012

Need for new NonVolatile Memory?

RRAM : Memory Structure

Device Resistive Switching Behavior

RRAM: Status

RRAM : classification & materials

RRAM : general definitions & history...

- Classification
- Filamentary switching
 - Properties of filamentary switching
 - Thermo-chemical RRAM
 - Bipolar "oxygen vacancy drift" RRAM
 - Electro-chemical CBRAM
- Interfacial switching

Resistive Switching Memories

Memory element is R (MIM-type 2-terminal)

- ρ can be altered by applying V/I on R
- readout R at low voltage

Bipolar or Unipolar Switching depending on mechanism

Resistive Switching Memories

- A 2-terminal resistor element with electrically alterable resistivity
 - typically a low and high conductive state, although (controllable) multi conductive states would be an asset (MLC)
 - focus on programming with an electrical signal (e.g. not magnetic)

Focus on non-volatile resistivity change

- Different from Ovonic switching (electronic switching from low to high-conductive state, but requiring a hold current to remain in high-conductive state), and also of typical Mott transition element (as VO₂)
- Focus on elements that can switch repeatedly from low to high conductive state.
 - Different from typical Fuse or anti-Fuse element (limited application to OTP)

The Time-Voltage Dilemma

How can we make a 2-terminal NVM ?

Fast programming

At ~IV, need programming in ~I0nsec

Good retention

At ~0.1V, need stable read for ~ 10 years

Write kinetics in Cu-SiO₂

Cu / SiO₂ (15nm) / Ir cells

SET voltage (write threshold) depends exponentially on rate of voltage change but saturates at high rates due to *nucleation overpotential* (for this case Cu on Ir)

C. Schindler, G. Staikov, and R. Waser, "Electrode kinetics of Cu–SiO₂-based resistive switching cells: Overcoming the voltage-time dilemma of electrochemical metallization memories," Appl. Phys. Lett., 94, 072109 (2009).

Need operation mechanism with extreme non-linear behavior: >15 orders of magnitude in time over 1 decade in voltage

R.Waser (RWTH/Julich)

imec

11

Discovery resistive switching in oxides : I960's !

Vol 11, May 1964, p. 243

IEEE TRANSACTIONS ON ELECTRON DEVICES

The Reversible Voltage-Induced Initial Resistance in the Negative Resistance Sandwich Structure

> P. H. NIELSEN N. M. BASHARA Dept. of Elec. Engrg. University of Nebraska Lincoln, Neb.

Recently the authors have found that a high initial resistance can be read out for long periods of time as long as the voltage is kept well below that for maximum current. The above obviously suggests use of this device as a memory element which can read out nondestructively and which can be "erased" at will by increasing the voltage to a value beyond that for maximum current. The upper frequency limit of this effect has not been detern

neither has the usable read-out time.

IMEC 2012

SiO !

Au/SiO/Au structure

Fig. 1—Current-voltage locus, 60 cps. Ordinate scale is 40 ma/div, abcissa 2v/div. Superimposed is the high initial resistance locus resulting from *sudden* voltage removal at about 7-volts peak. The upper negative resistance curve is for voltage increasing, the lower for voltage decreasing.

The Radio and Electronic Engineer, August 1967

New Thin-film Resistive Memory

By J. G. SIMMONS, B.Sc., Ph.D., F.Inst.P.† AND R. R. VERDERBER, B.Sc., M.Sc.‡ D.WOUTERS SISC 2012

Summary: A new thin-film metal-insulator-metal device is described. After the insulator has undergone a forming process, which consists of the electrolytic introduction of gold ions from one of the electrodes, its conductivity is observed to have increased quite markedly. In addition the sample displays negative-resistance and memory phenomena. It is shown that under the appropriate switching conditions the device can be used as a non-volatile analogue memory with non-destructive read-out. The theory of operation of the device is also presented.

imec

Resistive switching effect in Transition Metal Oxides

First switching of NiO was already reported in 1964!

Solid-State Electronics Pergamon Press 1964. Vol. 7, pp. 785-797. Printed in Great Britain

SWITCHING PROPERTIES OF THIN NIO FILMS*

J. F. GIBBONS and W. E. BEADLE⁺

Stanford Electronics Laboratories, Stanford, California (Received 30 March 1964)

FIG. 1. Schematic representation of basic NiO thinfilm device.

Whatever happened to

Resisitive switching memories based on these concepts eventually never developed :

- problems of stability
- scaling questioned
- emergence & rapid successful development of Sibased memories !

Recent surge of interest

5 important events that put oxide RRAM again in the picture :

- I. A.Beck, B.J.Bednorz et al, IBM Zurich, APL 2000
- 2. W.Zhuang et al, Sharp/Univ Houston, IEDM 2002
- 3. I.G.Baek et al., Samsung, IEDM 2004
- 4. D.B.Strukov et al, HP labs, Nature 2008
- 5. H.Y.Lee et al, ITRI, IEDM, Tech. Dig., p. 297 2008

I.A.Beck, B.J.Bednorz et al, IBM Zurich, APL 2000

The Radio and Electronic Engineer, August 1967

U.D.C. 537.226

New Thin-film Resistive Memory

• Thin oxide films for memory are back !

J. G. SIMMONS, B.Sc., Ph.D., F.Inst.P.† AND R. R. VERDERBER, B.Sc., M.Sc.‡

electrolytic introduction of gold ions from one of the electrodes, its conductivity is observed to have increased quite markedly. In addition the sample displays negative-resistance and memory phenomena. It is shown that under the appropriate switching conditions the device can be used as a non-volatile analogue memory with non-destructive read-out. The theory of operation of the device is also presented.

APPLIED PHYSICS LETTERS

By

VOLUME 77, NUMBER 1

3 JULY 2000

Reproducible switching effect in thin oxide films for memory applications

A. Beck, J. G. Bednorz, Ch. Gerber, C. Rossel,^{a)} and D. Widmer IBM Research, Zurich Research Laboratory, CH-8803 Rüschlikon, Switzerland

(Received 13 March 2000; accepted for publication 15 May 2000)

Thin oxide films with perovskite or related structures and with transition metal doping show a reproducible switching in the leakage current with a memory effect. Positive or negative voltage pulses can switch the resistance of the oxide films between a low- and a high-impedance state in times shorter than 100 ns. The ratio between these two states is typically about 20 but can exceed six orders of magnitude. Once a low-impedance state has been achieved it persists without a power connection for months, demonstrating the feasibility of nonvolatile memory elements. Even multiple levels can be addressed to store two bits in such a simple capacitor-like structure. © 2000 American Institute of Physics. [S0003-6951(00)04327-8]

33 yrs

2.W.Zhuang et al, Sharp/Univ Houston, IEDM 2002

coined the term RRAM

realization 1D1R array

Novell Colossal Magnetoresistive Thin Film Nonvolatile Resistance Random Access Memory (RRAM)

W. W. Zhuang¹, W. Pan¹, B. D. Ulrich¹, J. J. Lee¹, L. Stecker¹, A. Burmaster¹, D. R. Evans¹, S. T. Hsu¹, M. Tajiri², A. Shimaoka², K. Inoue², T. Naka², N. Awaya² K. Sakiyama², Y. Wang³, S. Q. Liu³, N. J. Wu³, and A. Ignatiev³

Sharp Laboratories of America, 5700 NW Pacific Rim Blvd, Camas, WA 98607, USA
 Sharp Corporation, IC Group, 2613-1 Ichinomoto-cho, Tenri, Nara 632, Japan
 Texas Center for Superconductivity and Advanced Material, University of Houston, Houston, Texas 77204-5002 USA

Fig.1 Pulsed Laser Deposited (PLD) test memory resistor structure. The memory material is PCMO (Pr_a,Ca_a,MnO_3). The double bottom electrode is formed with YBCO (YBa,Cu_O_3) on LAO (LaAIO_3)

Fig.3 Resistor/diode memory array cell structure. Both top and bottom electrode of the memory resistor is made of Pt. The cell size can be as small as $4F^2$ This memory array required positive pulse for bot write and reset programming

Fig.5 TEM microphotograph of a 1R1D memory cell. Shallow P+ layer is formed onto n bit line. The memory array interconnect is copper doped Al.

Principle on bulk crystals published by A.Asamitsu et al., Nature, 1997

imec

IMEC 2012

D.WOUTERS SISC 2012

3. I.G.Baek et al., Samsung, IEDM 2004

1st advanced work (integrated device) with simple binary oxide (NiO)
Coined the term OxRRAM (switching in TMO)

Highly Scalable Non-volatile Resistive Memory using Simple Binary Oxide Driven by Asymmetric Unipolar Voltage Pulses

I. G. Baek, M. S. Lee, S. Seo^{*}, M. J. Lee^{*}, D. H. Seo^{*}, D.-S. Suh^{*}, J. C. Park^{*}, S. O. Park, H. S. Kim, I. K. Yoo^{*}, U-In Chung and J. T. Moon

IEDM 2004

4. D.B.Strukov et al., HP labs, Nature 2008

- Memristor concept applied to RRAM
- Triggered a lot of interest, especially in EE (design) world

The missing memristor found

Dmitri B. Strukov¹, Gregory S. Snider¹, Duncan R. Stewart¹ & R. Stanley Williams¹

$$M(q) = \mathcal{R}_{\text{OFF}}\left(1 - \frac{\mu_{\text{V}}\mathcal{R}_{\text{ON}}}{D^2}q(t)\right)$$

Figure 1 | The four fundamental two-terminal circuit elements: resistor, capacitor, inductor and memristor. Resistors and memristors are subsets of a more general class of dynamical devices, memristive systems. Note that R, C, L and M can be functions of the independent variable in their defining equations, yielding nonlinear elements. For example, a charge-controlled memristor is defined by a single-valued function M(q).

imec

IMEC 2012

D.WOUTERS SISC 2012

5. H.Y.Lee et al, ITRI, IEDM 2008

- First RRAM cell using all excellent CMOS compatible materials:
- HfO₂ as switching oxide; TiN/Ti as electrode materials
- High cyclability, bipolar switching

Low Power and High Speed Bipolar Switching with A Thin Reactive Ti Buffer Layer in Robust HfO₂ Based RRAM

H. Y. Lee^{1,3}, P. S. Chen², T. Y. Wu¹, Y. S. Chen¹, C. C. Wang¹, P. J. Tzeng¹, C. H. Lin¹, F. Chen¹, C. H. Lien³, and M.-J. Tsai¹

RRAM : classification & materials

RRAM : general definitions & history...

Classification

- Filamentary switching
 - Properties of filamentary switching
 - Thermo-chemical RRAM
 - Bipolar "oxygen vacancy drift" RRAM
 - Electro-chemical CBRAM
- Interfacial switching

Taxonometry of Resistive Switching Memories : based on Mechanism

Resistive Switching

imec

IMEC 2012

D.WOUTERS SISC 2012

Resistance Modulation Geometry

RRAM : classification & materials

- RRAM : general definitions & history...
- Classification
- Filamentary switching
 - Properties of filamentary switching
 - Thermo-chemical RRAM
 - Bipolar "oxygen vacancy drift" RRAM
 - Electro-chemical CBRAM
- Interfacial switching

ID Filamentary switching

imec

Indications for filamentary switching

From physico-chemical analysis

Indications for filamentary switching

Electrical fingerprint from device characteristics

- Area (in)dependence of LRS/HRS and switching voltages

F.Nardi et al, IEEE Trans. El.Dev. 59(9). 2661 (2012)

imec

IMEC 2012

Forming: creating a conduction path by "breakdown"

Similar to (soft) breakdown in dielectrics (defect & percolation path generation)

imec

Maximum current during Forming(/SET) controls filament "Strength"

imec

"Scaling of filamentary switching"

- 2D and 3D switching:
 - Current levels scale with area of the cell $\sim F^2$
- ID switching:
 - Current levels independent of cell area
 - Current level determined by filament "diameter"
 - Determined by operation conditions (Forming/SET CC)
 - We can have small current even in large device
 - Limitations ?
 - Cell area ~ filament size..
 - Smallest filament size ?
 - ~ nm ??

F.Nardi et al, Trans. El. Dev. 59(9), p.2461,2012

Influence of spike currents

imec

IMEC 2012

ITIR integrated teststructure for stable current control

FIG. 1. (Color online) Five configurations used to measure I_{reset} - I_{comp} characteristics: The circuit composed by connecting (a) a current limiter built into the SPA and (b) a resistance, respectively, to the Pt/NiO_x/Pt structure. (c) The 1T1R cell consisting of the Pt/NiO_x/Pt structure and the cell transistor. (d) The circuit composed by connecting the drain of 1T to the Pt/NiO_x/Pt structure of the 1T1R cell with the monitor pad via probes and a coaxial line. (e) The 1T1R cell with the monitor pad.

Kinoshita et al, APL vol. 93

Intrinsic Forming voltage scaling

B.Govoreanu, IEDM 2011

Area dependence of Forming voltage

Due to defect distribution statistics

Fitting single area-scaled Weibull plot

B.Govoreanu, SSDM 2011

Area dependence of Forming

Due to defect distribution statistics

Difference between amorphous and crystalline V_{FORMING} : linked to different leakage current tails

B.Govoreanu, IEDM 2011

Switching during SET/RESET: SET ≠ Forming

Absence of oxide thickness effect on $V_{SET/RESET}$ indicative of LOCAL filament switching

IMEC 2012

Forming free for thin films ?

- Linear scaling with oxide thickness:
 - Field driven
- Predicts "formingfree" behavior if t_{ox}<2.5 nm
 - limitation ?
 - new filament creation
 @ each Set ?

B.Govoreanu et al, IEDM 2011

Single or multiple filaments ?

R.Degraeve et al., IEDM 2010

Indications of multi-filaments?

"Forming" at lower voltage...

R.Degraeve et al., IEDM 2010

BD theory predicts possible activation of new filaments even at lower SET voltage..

imec

The winner takes it all ?

Most models assume single filament

Ch. Lenser et al., J. Appl. Phys. 111, 076101 (2012);

IMEC 2012

RRAM : classification & materials

- RRAM : general definitions & some history...
- Classification
- Filamentary switching
 - Properties of filamentary switching
 - Thermo-chemical RRAM
 - Bipolar "oxygen vacancy drift" RRAM
 - Electro-chemical CBRAM
- Interfacial switching

Unipolar Switching OxRRAM : "Thermo-Chemical Fuse/antifuse"

Role of oxygen / oxygen vacancy defects in OxRRAM memories

Filament switching involves oxygen transport

Bubbles < O2 released to the gas phase or adsorbed by the grainboundaries of the Pt electrode

Szot et al., Nature materials (2006)

- Filament observations indicate local lower O concent
 - Magnelli phase of Ti_4O_7 or Ti_5O_9 , essentially TiO_{2-x}
 - \rightarrow Oxygen vacancy defects

imec

Oxygen vacancy filament conduction

- Oxygen vacancies influence conduction
 - Electron hopping from one vacancy to another
 - Act as local "doping" \rightarrow thermally activated conduction
 - Create conductive defect band in Metal Oxide (e.g. at GB)

 \rightarrow Metallic conduction

Why Transition Metal Oxides?

- Transition metals, have 2 or multiple oxidation states
- Transition metal oxides are good ionic conductors. (Used in fuel cells for that reason)

Figure 9 Cross-section of the lateral device with 2 bottom electrode to clarify the crystal structure detected from the surface of the switching film, using Raman microspectroscopy.

Figure 10 Raman spectra detected from the surface of the switching film. The (a) shows the spectrum for the region (1) before electroforming and (2) before and after electroforming. The (b) shows the spectrum for the region (1) after electroforming.

S.Muraoka et al., IEDM 2007

Switching Process

Forming creates filament consisting of oxygen vacancies

RESET: local oxidation ; (Forming/)SET: local reduction

How to explain process and unipolar character ?

Unipolar SET process

Stage I: high-field threshold switching \rightarrow high current path Stage 2: high current also induces Joule heating

High Field + high T: damage MOx (bond breaking/reduction)
→ permanent conductive path

Unipolar RESET process

High (ON) current induces high T by Joule heating Thermal oxidation "dissolves" of the filament

CF

Why unipolar ?

Non-directional mechanisms:

- temperature
- "BD" field

Anodic Oxidation @ "active" electrode

- Previous model does not take effect of electrodes into account
- Actual switching requires "active" electrode
 - Pt, Ni, ...
 - Active electrode catalyses anodic oxidation reaction during RESET
 - Filament "rupture" at active electrode interface and not at center as deduced from pure thermal simulations

L.Goux et al, VLSI Technology 2011

imec

IMEC 2012

A-polar and Uni-polar switching

- Unipolar switching:
 - SET and RESET at SAME polarity
 - However, RESET needs specific polarity due to anodic oxidation
- Apolar switching:
 - Only in **symmetric structure** :

Active electrode as both bottom and top electrode

A.Cagli et al, IEDM 2011

- Unipolar switching mechanism:
 - FORMING/SET : High Field activated reduction
 - RESET : High T induced local re-oxidation (Joule heating)
 - Oxygen diffuses "locally"
- High energy (thermal activated process, breakdown)
 - High V, I
 - Stronger filament "break" : higher R-window
- Loss of oxygen : diffusion is not very directional
 - Limited cyclability
- I voltage polarity :
 - use of simple DIODE as selector : IDIR cell

State of the art.../I typical results

"High Performance Unipolar AlOy/HfOx/Ni based RRAM Compatible with Si Diodes for 3D Application", X.A. Tran, VLSI Technology 2011

imec

State of the art.../2. low current results

Imec

NTHU/TSMC ISSCC 2012 ITIR

A 0.5V 4Mb Logic-Process Compatible Embedded Resistive RAM (ReRAM) in 65nm CMOS Using Low-Voltage Current-Mode Sensing Scheme with 45ns Random Read Time

Unipolar

Low-Voltage Write Enablers: ReRAM + LVCP + LPLS

Figure 25.7.1: Block diagram and cell structure of the low-voltage ReRAM macro.

1M-bit RRAM R/W Drivers 1M-bit RRAM

Figure 25.7.7: Measured results.

NTHU/TSMC ISSCC 2012

Technology	TSMC 65nm CMOS Logic Process
Capacity	4Mb (4 x 1Mb)
ReRAM Device	VSET= 2V VRRESET=1.5V
Sub-array	1024 columns x 512 rows
VDD	Write: 0.48V~1V Read: 0.32V~1V
Testchip Size	4.74mm ²
Testchip Read Power (include Testchip buffers)	0.5mA at VDD=0.5V
Low-Voltage Charge- Pump (LVCP)	Min. Vin = 0.45V at Vout=2V
Low-Power Level- Shifter (LPLS)	Min. Vin = 100mV at Vout=2V

imec

IMEC 2012

RRAM : classification & materials

- RRAM : general definitions & some history...
- Classification
- Filamentary switching
 - Properties of filamentary switching
 - Thermo-chemical RRAM
 - Bipolar "oxygen vacancy drift" RRAM
 - Electro-chemical CBRAM
- Interfacial switching

Bipolar Switching OxRRAM : "Oxygen Vacancy Migration"

CC.

Bipolar vs unipolar switching OxRRAM

- Same TMO-based RRAM cells ?
 - Requirement for bipolar switching = asymmetric structure
- Type I : cells with one "active" electrode :
 - Show both unipolar and bipolar switching
- Type II: cells with asymmetrically built-in oxygen vacancies
 - Cells show bipolar switching

Mechanism ?

Focus here on HfO₂ based RRAM

I."Active electrode" based HfO₂ RRAM

Structure:

- Stoechiometric HfO₂ with one catalytic active electrode (e.g., Pt), and one neutral electrode (e.g., TiN)

Forming:

- BOTH generation of oxygen vacancies AND filament formation
- High forming voltage (>3V, 5nm HfO2 films)

L.Goux et al., On the Gradual Unipolar and Bipolar Resistive Switching of TiN\HfO2\Pt Memory Systems, Electrochemical and Solid-State Letters, 13 6 G54-G56 2010

I."Active electrode" based HfO₂ RRAM

- Reset : anodic oxidation
 - Requires positive voltage at active electrode
 - re-oxidation of filament at Pt anode interface [1]
 - Oxygen supply from active electrode
- Set :
 - Vacancy creation + thermal assisted outdiffusion
 & drift of oxygen
- No closed system:
 - Generation/recombination of oxygen vacancies
 - Main mechanism = transport of Oxygen
 - atmosphere effects [2]
- Main difference with unipolar operation
 - Drift-assisted motion of charged oxygen species results in improved cyclability

[1] L.Goux et al., Electrochemical and Solid-State Letters, 13 6 G54-G56 2010[2] L.Goux et alAPPLIED PHYSICS LETTERS 97, 243509 2010IMEC 2012D.WOUTERS SISC 2012

2. "Oxygen vacancy drift" based RRAM

Controlled introduction of oxygen vacancy by **process**

- Oxygen scavenging metal cap layer on top of stoechiometric HfO_2 (ALD)
 - Ti. Hf. Ta....
 - Local formation of $HfO_{2-\delta}$
- Deposition of substoichiometric HfO_{x} (PVD)
- Need for asymmetric profile of oxygen vacancies
 - Otherwise competing switching layers [1]

F.Nardi et al, "Complementary switching in metal oxides: toward diode-less Xbad RRAMs", IEDM 2011

Evidence of O migration in Hf CAP

100

80

(10nm) Hf (5nm) HfO_x

XPS Hf & O profiles

10nm Hf 10nm HfO₂

oxygen hafnium

B.Govoreanu et al, IEDM 2011

Evidence for asymmetric V_o profile

 Difference in TE/BE barrier height depending on local [V_O]

Internal Photoemission measurements – L. Pantisano et al., Microel. Eng. 88(2011)

 Difference in positive Forming voltage and negative Breakdown voltage

2."Oxygen vacancy drift" based RRAM

After forming

Forming:

- Main effect = filament formation ONLY
 - (limited creation of additional V_O)
- Reduced forming conditions (<2V for 5nm HfO₂ films)
- Polarity effect

2."Oxygen vacancy drift" based RRAM

Comparison

	/	
	Active Electrode	V _o Drift
Filament	Oxygen Vacancies	Oxygen Vacancies
Generation of V _O	Forming	Process
Forming (5nm HfO ₂)	High V (>3V)	LowV (<3V), tunable
Reset	Catalytic oxidation of filament	Filament narrowing
Defect model	Oxygen diffusion & drift Generation/ Recombination of V _O	Drift of V _O
System	Open (loss of O)	Closed (no V _O G/R)
Cyclability	Limited	High

Only "V_O drift" RRAM further discussed

>10¹⁰ Cyclability of HfO₂ RRAM

Y.Y.Chen, (imec) accepted for TED 2012

By balancing the SET pulse WL=1V, BL=1.8V, 5ns and RESET pulse WL =3V, SL=1.8V, 10ns, 10^{10} pulse endurance could be achieved on 40nm Hf/HfO₂ ITIR devices.

HfO₂ RRAM demonstrator

Process	CMOS: 0.18um 1P4M RRAM: 0.64um z0.48um
Memory Capacity	4Mb (32 x 128Kb sub-blocks)
Chip size	11310um x 16595um (with test-mode circuits)
Device	HV path: 3.3V device Cell array: 3.3V device Peripheral: 1.8V device
ממע	HV path: 3.3V Core: 1.8V
Read-Write Access Time (SLC-mode)	Random access: 7.2ns Burst-mode: 3.6ns

A 4Mb Embedded SLC Resistive-RAM Macro with 7.2ns Read-Write Random-Access Time and 160ns MLC-Access Capability

NTHU/ITRI ISSCC 2011 ITIR

imec

RRAM : classification & materials

- RRAM : general definitions & some history...
- Classification
- Filamentary switching
 - Properties of filamentary switching
 - Thermo-chemical RRAM
 - Bipolar "oxygen vacancy drift" RRAM
 - Electro-chemical CBRAM
- Interfacial switching

Conductive Bridge RRAM : "Programmable Metallization Cell"

Electrochemical filament formation

- Oxidation at anode: forming of metal ions (Ag \rightarrow Ag⁺ + e⁻)
- Drift of metal ions through insulating switching layer
- Reduction at cathode: plating out of metal ions (Ag⁺ + $e^{-} \rightarrow$ Ag)
 - Growing filament forms "virtual cathode"

Rainer Waser et al., Adv. Mater. 2009, 21, 2632–2663

U. Russo et al., IEEE TRANSACTIONS ON ELECTRON DEVICES, 56(5), p. 1040, 2009

imec

IMEC 2012

Bipolar Switching

Materials and Structures

imec

IMEC 2012

- Combines high resistance window with low current operation
- Good cyclability (>10⁸ cycles)
- Limited thermal stability of material and control of Cu diffusion
 - Process T and High-T retention issue
- Low RESET voltage (disturb)

SONY ISSCC 2011 CBRAM ITIR

A 4Mb Conductive-Bridge Resistive Memory with 2.3GB/s Read-Throughput and 216MB/s Program-Throughput

Capacity	4 1010
Tile	256Kb
Process	180nm CMOS
Chip size	6.8x5.26mm 35.8 mm ²
Cell architecture	1T-1R
Cellsize	2 24 µm ²
Power Supply	3.3 V,1.8 V
Memory / IF clock	125MHz
Read Size, Throughput	128Byte 2 3GB/s
Program Size, Throughput	16Byte 216MB/s

Figure 11.7.1: Die micrograph and features.

Figure 11.7.2: Array organization.

RRAM : classification & materials

- RRAM : general definitions & some history...
- Classification
- Filamentary switching
 - Properties of filamentary switching
 - Thermo-chemical RRAM
 - Bipolar "oxygen vacancy drift" RRAM
 - Electro-chemical CBRAM
- Interfacial switching

2D switching RRAM

92

Mechanism: modulation of Schottky barrier

Akihito Sawa, MaterialsToday 11(6) p.28 2008

by moving oxygen vacancies to or from the interface

Area scaling as fingerprint of 2D switch

PRO/CON 2D Interfacial Switching

- Materials :
 - Complex perovskite oxides : process (in) compatibility ?
 - Pt electrode required for good Schottky barriers
- Thick films :
 - may compromise scaling
- Asymmetry and Non-linearity of LRS I-V behavior:
 - Suitable for Self Rectifying Cell

Interfacial switching key for Self Rectifying Cell...

Current limited by QM tunneling through tunneling layer Barrier height influenced by oxygen vacancies driven in our out the TO

J.Sanchez, NCCAVS Thin Film User Group Meeting, 10/14/09

imec

IMEC 2012

UNITY SC ISSCC2010 SRC

A 0.13µm 64Mb Multi-Layered Conductive Metal-Oxide Memory

imec

IMEC 2012

Need for new Non Volatile Memory?

RRAM : Memory Structure

Device Resistive Switching Behavior

RRAM: Status

RRAM Memory Structure

- Memory Cell > RRAM element
- Different RRAM Cell configurations
- 3D RRAM architectures

RRAM Cell and Array configurations

- RRAM element = RRAM cell ?
 - Raw Cross Point array = highest density configuration

RAW XP LIMITATIONS

- Read errors due to sneak current paths
- Program disturbs on half-select cells (1/2 or 1/3 V scheme)
- Power dissipation due to current through halfselected cells

E.Linn en al, NATURE MATERIALS VOL 9 p. 403 MAY 2010

J.Liang et al., IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 57, NO. 10, p.2532 OCTOBER 2010

imec

IMEC 2012

RAW XP ARRAY EXPLORATION

Very limited array sizes, dependent on Ron/Roff ratio, Ron value, non-linearity, etc. Solution ? Need for selector element in RRAM cell

imec

ITIR cell

Transistor is ideal selector

- Both isolation switch and current limiter (during SET)
- 3-terminal device : large cell
- Best suited for embedded RRAM

IDIR-ISIR cell

- Diode selector
 - Good selector : strong asymmetry (rectification) combined with strong (exponential) non-linearity
 - 2 terminal selector on top of RRAM
 - Small cell size possible
 - Only for unipolar switching RRAM
 - Voltage drop over diode
 - Large aspect ratio
- For bipolar RRAM
 - New 2 terminal selectors :
 - "Symmetric" diode type and Volatile Switching types

2-Terminal SELECTOR concepts

3D RRAM ARRAY OPTIONS

3D Stackable RRAM

3DVRRAM

imec

3D RRAM ARRAY OPTIONS

3D Stackable RRAM

"pseudo 3D" = 2D stacking

M. Lee, et al., IEDM Tech. Dig. 2007

3D Matrix, Semiconductor International, 7 Jan. 2005

imec

IMEC 2012

3D RRAM ARRAY OPTIONS

H.Yoon, et al., VLSI Tech. 2009

Self Rectifying Cell

- Cell with strong nonlinearity (in ON state)
- Some proposals, but still limited nonlinearity

109
BIT CELL	SELECTION			
TT-1R	1D-1R	The second secon		
Embedded	2D stackable array	3D vertical RRAM		

	Embedded	2D stackable array	3D vertical RRAM
PROS	Easy to optimize high ON/OFF ratio Easy to integrate in CMOS BEOL (3 extra masks vs 8 for Flash)	4F2	4F2 thin
CONS	Big cell, not stackable	Stackable?	No real solution yet

Need for new Non Volatile Memory?

RRAM : Memory Structure

Device Resistive Switching Behavior

RRAM: Status

RRAM switching behavior

Detailed understanding of RRAM device behavior required for :

- Tuning memory operation conditions
- Predicting reliability
- Optimizing material stack

Not just process, but detailed kinetics of device behavior

Focus on oxygen-drift HfO₂ RRAM

 More generally applicable to bipolar filamentary switching (Ox)RRAM

IMEC 2012

D.WOUTERS SISC 2012

Understanding RRAM switching

- I. Modeling approaches
- 2. Intrinsic RRAM switching
- 3. QPC filament conduction model
- 4. Hourglass switching model

Modeling approaches

How to understand filamentary switching ?

(i) use your imagination

The Artist approach to RRAM

R. Waser et al. in: Nanoelectronics and Information Technology (3rd ed.), Wiley-VCH 2012

imec

IMEC 2012

D.WOUTERS SISC 2012

(too) many RRAM artist styles ?

Relevance of Science Art ?

- Visualize possible processes
 - Generation of new insights
 - May hint to possible flaws in the assumed model
 - Explaining RRAM to your management
- Not a proof on its own but a good add-on of theoretical models
- Limitations :
 - Limited to classical "particle" models : problem to visualize Quantum-Mechanical processes...

Modeling approaches

How to understand filamentary switching ?

- (i) use your imagination : the "artist" approach
- (ii) bottom up: material scientist approach

BOTTOM-UP approach

 List up all possible physical processes potentially involved in the resistive switching...

IMEC 2012

BOTTOM-UP approach critique

Too many possible equations to cope with.

- How to select relevant/dominating processes?
- A lot of different processes described by similar "exponential" math....

You only get out what you put in

- unexpected processes may play a role
 Classical "continuum" approach
 - Finite element modeling of current & temperature based on local conductivity and Joule heating
 - Cannot account for Quantum-Mechanical effects!

Example : V-t dilemma in CBRAM

- Which is the rate limiting process in CBRAM?
 - (i) anodic dissolution of Cu according to $Cu \Rightarrow Cu^{z^+}+ze^-$
 - (ii) drift of the Cu^{z+}cations across the SiO₂
 - (iii) cathodic deposition at the Pt electrode by $Cu^{z+}+ze^{-} \Rightarrow Cu$.
- All 3 give exponential !
- Argued that (iii) dominates through the charge transfer rate at the Cu/SiO₂ interface described by the Butler–Volmer equation

How deep at the bottom to start?

- The "ultimate" bottom : Ab Initio
 - Obtained A.I. results have been revealing on the behavior of oxygen defects (charge states, formation energy, diffusion constants) and their coalescence into filaments
 - But limited to study specific effects

Fig. 1. Schematic picture of the oxygen vacancy chain system in $3 \times 3 \times 4$ supercell of rutile TiO₂. The red represents oxygen, the blue represents Ti, and the black represents the oxygen vacancy. All oxygen vacancies are on the same (110) plane. (a) [110] vacancy chain. (b) [001] vacancy chain.

S. Park, et al.,IEEE Electron Device Letters, 32, 197, 2011. IMEC 2012 D.WOUTERS SISC 2012

Katsumasa Kamiya et al, Appl. Phys. Lett. 100, 073502 (2012);

Modeling approaches

How to understand filamentary switching ?

- (i) use your imagination : the "artist" approach
- (ii) bottom up: the material scientist approach

(iii) top-down: the EE approach

The EE approach

- Start from device behavior: electrical characterization
 - Conduction in different R states
 - Intrinsic versus extrinsic switching curves
 - Try to analyze the important effects (AC vs DC, temperature)
 - Effect of sample geometry (e.g. device area)
 - Others: RTN...
- Come up with a model
 - Filament model for conduction in HRS and LRS
 - Kinetic model for switching
- Check if we can simulate all electrical data with consistent and physically "sound" set of parameters

TOP-DOWN approach critique

- Behavioral model...
 - ... but preferentially physics based

link to actual material processes = "MEET IN THE MIDDLE"

- Device behavior can be influenced by
 - Material
 - Device structure
 - Process effects

May limit a more general value..

Understanding RRAM switching

- I. Modeling approaches
- 2. Intrinsic RRAM switching
- 3. QPC filament conduction model
- 4. Hourglass switching model

DC switching measurements : 0TIR

Current compliance hides (SET) switching

-0.8 L

-1.6

-1.2

-0.8 -0.4

Voltage [V]

0

0.4

0.8

DC switching measurements : ITIR

- Total cell voltage during SET switching known
- But high non-linearity of Transistor current
 I_{DS}=f(V_G,V_{DS}) prohibit calculation of voltage over RRAM

DC switching measurements : 2R

Using a linear integrated component (resistor):

- we can limit current
- We can recover the SET trajectory:

 $V_{RRAM} = V_{applied} - I.R_A$

 BL/V_A

R

2

V_{RRAM}

2*R*

Extrinsic Switching in 2R

- **RESET is very abrupt**. In clear contrast to "analog" reset.
- Gradual (linear) SET after first "jump"
- SET Linearly returns to origin with a different (lower) slope
- Onset of RESET symmetrically occurs at the same end point of SET sweep.

Extrinsic -> Intrinsic switching in 2R

- A. SET triggering followed by rapid "snapback": with slope (-I/RA)
- B. "Filament" then grows (i.e. current increases) at constant voltage ("transition voltage") V_{trans}
- C. RESET transition triggers at symmetrical $(-V_{trans})$ voltage with fast voltage increase ("snapforward") with slope (-1/RA)
- D. "Filament" then shrinks at approx constant saturation current IR, sat

Voltage controlled switching : definition of Transition Voltage

V_{TRANS} is the minimum voltage required for switching

Fingerprint of filamentary switching?

Analysis of different RRAM material systems show similar intrinsic switching characteristics

Transition Voltage = material dependent parameter?

TABLE I Parameters for Different Analyzed CRS Cells						
RRAM element	I _{max}	R_{LRS}^{a}	<i>R</i> _{SERIES}	V _{TRANS} ^b		
TiN\HfO ₂ \Hf\TiN	3 mA	~140 Ω	180 Ω	~0.36 V		
Pt\SiO ₂ \GeSe\Cu	0.9 mA	~264 Ω	1050Ω	~0.18 V		
Pt\SiO ₂ \Cu	15 mA	~27 Ω	220 Ω	~0.26 V		
$Pt \ Ta_2O_{5-x} \ TaO_{2-x} \ Pt$	40 µA	~10 kΩ	44 kΩ	~0.40 V		
Au CNT a-C Au	80 µA	~24 kΩ	$70 \text{ k}\Omega$	~1.85 V		
^a Average for Top and Bottom RE; ^b Average of $+$ and $- V_{TRANS}$						

Current scaling in 2R

Important observations (mean values):

- Transition voltage not depending on current level
- Evidence of deviation from ohmic behavior for LRS in the lowest current range

AC characterization

- Typically done using voltage pulses
 - Pulse effect measured by probing R after applying pulse
 - No information of what happens during the pulse

AC characterization in 2R

Understanding RRAM switching

- I. Modeling approaches
- 2. Intrinsic RRAM switching
- 3. QPC filament conduction model
- 4. Hourglass switching model

Non-linear & Quantized conduction

Quantum Point Contact model

- Inside filament : interacting defects (oxygen vacancies) create conductive band
- Geometric confinement

of current flow causes bottleneck with discrete levels

Quantum point contact
 (QPC) model for conduction

$$E(x, y) = eV_0 - \frac{1}{2}m\omega_x^2 x^2 + \frac{1}{2}m\omega_y^2 y^2$$

0.04

0.02

-0.02 -

6.938890-01

Fitting I-V with QPC

• Only ω_y parameter changes \rightarrow indicating RESET occurs by local filament NARROWING

Constriction size ~ # defects

Filament Model

imec

142

Abstract filament model = Hourglass

- Filament = 2 reservoirs of oxygen vacancies connected by a constriction
- Size of defect reservoirs, number of defect particles, and constriction length are fixed by Forming

Understanding RRAM switching

- I. Modeling approaches
- 2. Intrinsic RRAM switching
- 3. QPC filament conduction model
- 4. Hourglass switching model

Dynamic Hourglass switching model

- Filament = charged defects (oxygen vacancies)
 - Moveable under influence of electric field
- Hourglass shape determined by Forming
 - Hourglass ~ substoichiometric HfOx with higher oxygen vacancy mobility :
 - defects remain in hourglass
 - No generation/recombination
- Defects can move down/up top to bottom reservoir depending on voltage polarity
Dynamic Hourglass switching model

- 4 different defect particle fluxes at TE/BE reservoir constriction interfaces
 - Temp. activated over voltage modified energy barrier E_a
 - Depending on filling level of the reservoir

Explanation of transition voltage

- From this model, it is possible to calculate the minimum voltage to move a defect in or out the constriction in a certain amount of time
- This voltage ~ cte at larger currents
 - = "transition voltage"
- Independent of polarity : same voltage to start RESET

Further work

Here focused on SET behavior and explanation of "constant voltage" filament growth

Hourglass model can explain also other effects, as:

- "overcurrent" in Ist RESET after forming
- RESET behavior as function of V and time'
- Fluctuationns and Disturb of RESETstate

Need for new NonVolatile Memory?

RRAM : Memory Structure

Device Resistive Switching Behavior

RRAM: Status

RRAM Status

- Performance and Endurance
- Scalability
- Demonstrators
- Product announcements

Steady improvement of RRAM operation speed & current

imec

> 10¹² "unlimited" cyclability in TaOx

Y-B.Kim et al, VLSI Technology 2011

imec

<10nm scalability of HfO₂ RRAM cells

imec

IMEC 2012

153

ARRAY DEMONSTRATIONS OF IT-IR RRAM

ARRAY DEMONSTRATIONS OF IS-IR RRAM

Unity, ISSCC 2010 64Mb, 130nm

es oltage switch predecoders RAM ense 45nm cell 90nm 180 nm pitch CMOS 90 nm pitch Array Y0 M2

IMEC 2012

imec

Panasonic, ISSCC 2012 HYNIX, VLSI 2012 8Mb,

54nm CMOS platform

Fig. 1 TEM image of fully integrated crossbar array with the 54nm standard CMOS process technology

Elpida announces ReRAM chip, aims to enter market 2013

Peter Clarke

1/25/2012 3:13 PM EST

64Mb, 50nm process, Collaboration with AIST and SHARP

imec

Toshiba_Sandisk will announce a 32Gb IDIR RRAM in 24nm @ ISSCC2013

Storage Capacity [Mb]. 128Gb NAND Flash 100000 Cond, 1Mb 32Gb ISSCC, VLSI Circuits, ASSCC IEDM, VLSI Tech. RRAM 10000 8Gb 1000 PRAM 128Mb FeRAM 100 64Mb MRAM 10 1 EETimes Asia 21 Nov. 2012 2005 2007 2009 2011 2013 2001 2003 Year RRAM is fastly emerging !

Conclusions

- Short introduction in why and how of RRAM
- Exciting material and device research field
 - a lot of understanding during last years
- RRAM emerging to reality ?

43rd IEEE Semiconductor Interface Specialists Conference

nec

Thank You !

Acknowledgements:

• Many contributions from the imec RRAM team, especially:

Y.Y,Chen, S.Clima, R.Degraeve, L.Goux, B.Govereanu, G.S.Kar, A.Fantini, L.Zhang

- Program director : M.Jurczak
- Industrial partners in imec's Core CMOS program

	type	PCRAM	OxRRAM	STT-RAM
Operation	Write Speed	>10nsec	~5nsec	~Insec
	Write current	~10's of uA	~uA's	I-I0MA/cm ²
	MLC?	Yes	?	No
	Endurance	109	1012	10 ¹⁵ (infinite?)
	Ron/Roff	>103	10-100	~2
CMOS compatibility	Switching Voltage	2 -4V	2-4V (+ needs Forming)	I-2V
	Materials	GeSbTe	Standard (HfO ₂)	NS Metal stacks
	Process limitations	None? (non- standard material)	None	Limited thermal stability
Scalability	Limitations	Current (need sub-litho scaling)	Variability (localized thin filament)	Retention (~Volume)
Configuration	Selector	IDIR	ITIR-ISIR	ITIR
	2D stackable	?	Yes	No
Target applications ?		(NOR-Flash) SCM? Embedded ?	SCM (NAND) Flash Embedded ?	DRAM Embedded ?